Issue
Mechanics & Industry
Volume 26, 2025
Artificial Intelligence in Mechanical Manufacturing: From Machine Learning to Generative Pre-trained Transformer
Article Number 32
Number of page(s) 16
DOI https://doi.org/10.1051/meca/2025024
Published online 24 October 2025
  1. S. Li, M. Brun, A. Gravouil, Efficient transient dynamic analysis of a crane bridge subjected to shake table tests using non-linear substructuring, Mechanics & Industry. 26, 8 (2025) [Google Scholar]
  2. A.M. Styrk, B. Isaksen, S.O. Hansen, Full-scale monitoring of the wind field, surface pressures and structural response of Gjemnessund suspension bridge, Struct. Eng. Int. 32, 43–54 (2022) [Google Scholar]
  3. E. Yu, G. Xu, Y. Han, Bridge vibration under complex wind field and corresponding measurements: a review, J. Traffic Trans. Eng. (English edition), 9, 339–362 (2022) [Google Scholar]
  4. Y. Yang, Innovation mechanism of common technology collaboration in emerging industries within the context of big data and the internet of things, Eng. Intell. Syst. 33, 39–46 (2025) [Google Scholar]
  5. K.S. Jon, Y. Huang, C.H. Sin, Influence of wind direction on the ventilation and pollutant dispersion in different 3D street canyon configurations: numerical simulation and wind-tunnel experiment, Environ. Sci. Pollut. Res. 30, 31647–31675 (2023) [Google Scholar]
  6. L. Caros, O. Buxton, T. Shigeta, Direct numerical simulation of flow over a triangular airfoil under Martian conditions, AIAA J. 60, 3961–3972 (2022) [Google Scholar]
  7. C. Sabater, P. Stürmer, P. Bekemeyer, Fast predictions of aircraft aerodynamics using deep-learning techniques, AIAA J. 60, 5249–5261 (2022) [Google Scholar]
  8. K. Li, J. Kou, W. Zhang, Deep learning for multifidelity aerodynamic distribution modeling from experimental and simulation data, AIAA J. 60, 4413–4427 (2022) [Google Scholar]
  9. B. Sun, Revisiting the reynolds-averaged navier-stokes equations, Open Phys. 19, 853–862 (2022) [Google Scholar]
  10. M.P. Pranjivan, Fractional and tempered fractional models for Reynolds-averaged Navier-Stokes equations, J. Turbul. 24, 507–553 (2023) [Google Scholar]
  11. C.C. Kiris, A.S. Ghate, O.M.F. Browne, HLPW-4: Wall-modeled large-eddy simulation and lattice–Boltzmann technology focus group workshop summary, J. Aircraft, 60, 1118–1140 (2023) [Google Scholar]
  12. E.J. Alvarez, A. Ning, Stable vortex particle method formulation for meshless large-eddy simulation, AIAA J. 62, 637–656 (2024) [Google Scholar]
  13. H. Li, Y. Xu, C. Si, A research on aerodynamic characteristics of non-pneumatic tire, Mechanics & Industry. 22, 27 (2021) [Google Scholar]
  14. P.M. Mehta, S.N. Paul, N.H. Crisp, Satellite drag coefficient modeling for thermosphere science and mission operations, Adv. Space Res. 72, 5443–5459 (2023) [Google Scholar]
  15. K. Wei, F. Zhang, M. Zhang, Influence of the sag-to-span ratio on the dynamic response of a long-span bridge suspended from floating towers under wave and wind loads, Ships Offshore Struct. 17, 1023–1041 (2022) [Google Scholar]
  16. G. Rigatos, K. Busawon, M. Abbaszadeh, P. Wira, Non-linear optimal control for four-wheel omnidirectional mobile robots, Cyber-Phys. Syst. 6, 181–206 (2020) [Google Scholar]
  17. K. Wei, J. Hong, M. Jiang, A review of breaking wave force on the bridge pier: Experiment, simulation, calculation, and structural response, J. Traffic Transp. Eng. (English Edition), 9, 407–421 (2022) [Google Scholar]
  18. X.X. Cheng, J.H. Fan, Z.H. Xiao, Finite element model updating for the Tsing Ma Bridge tower based on surrogate models, J. Low Freq. Noise Vib. Act. Control 41, 500–518 (2022) [Google Scholar]
  19. L.A. Al-Haddad, Y.M. Al-Muslim, A.S. Hammood, Enhancing building sustainability through aerodynamic shading devices: an integrated design methodology using finite element analysis and optimized neural networks, Asian J. Civil Eng. 25, 4281–4294 (2024) [Google Scholar]
  20. Y. Wu, J. Shi, W. Ma, B. Liu, Bridge crack recognition method based on Yolov5 neural network fused with attention mechanism, Int. J. Intell. Inf. Technol. (IJIIT), 20, 1–25 (2024) [Google Scholar]
  21. R. Vinuesa, S.L. Brunton, Enhancing computational fluid dynamics with machine learning, Nat. Comput. Sci. 2, 358–366 (2022) [Google Scholar]
  22. M. Mani, A.J. Dorgan, A perspective on the state of aerospace computational fluid dynamics technology, Annual Rev. Fluid Mech. 55, 431–457 (2023) [Google Scholar]
  23. K.U. Sarker, A systematic review on lightweight security algorithms for a sustainable IoT infrastructure, Discov Internet Things 5, 47 (2025) [Google Scholar]
  24. J. Liu, M. Shen, X. Huang, Anisotropic flow-solid coupling model for gas extraction from cis-layer boreholes and its application, ACS Omega, 7, 48150–48162 (2022) [Google Scholar]
  25. L. Wan, Z. Song, Q. Sun, Wind tunnel test study on lattice high support of bridge in typhoon area Wind tunnel test study on lattice high support of bridge in typhoon area, Stavební obzor-Civil Eng. J. 33, 574–590 (2024) [Google Scholar]
  26. Z. Zhang, J. Song, K. Wang, Response analysis of river ice-induced vibration under fluid-solid coupling, J. Appl. Fluid Mech. 17, 2761–2774 (2024) [Google Scholar]
  27. M. Zou, N. Holjevac, J. Đaković, Bayesian CNN-BiLSTM and vine-GMCM based probabilistic forecasting of hour-ahead wind farm power outputs, IEEE Trans. Sustain. Energy 13, 1169–1187 (2022) [Google Scholar]
  28. S.M. Malakouti, A.R. Ghiasi, A.A. Ghavifekr, Predicting wind power generation using machine learning and CNN-LSTM approaches, Wind Eng. 46, 1853–1869 (2022) [Google Scholar]
  29. Q.B. Phan, T.T. Nguyen, Enhancing wind speed forecasting accuracy using a GWO-nested CEEMDAN-CNN-BiLSTM model, ICT Express, 10, 485–490 (2024) [Google Scholar]
  30. Z. Zhao, H. Nan, Z. Liu, Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM, Environ. Sci. Pollut. Res. 29, 58097–58109 (2022) [Google Scholar]
  31. Z. Li, D.Z. Huang, B. Liu, Fourier neural operator with learned deformations for pdes on general geometries, J. Mach. Learn. Res. 24, 1–26 (2023) [Google Scholar]
  32. C. Song, Y. Wang, High-frequency wavefield extrapolation using the Fourier neural operator, J. Geophys. Eng. 19, 269–282 (2022) [Google Scholar]
  33. X. Ziyan, D. Yuting, H. Guangjing, Airfoil stall flutter prediction based on deeponet, Chin. J. Theor. Appl. Mech. 56, 626–634 (2024) [Google Scholar]
  34. Y. Zhao, J. Zhao, Z. Wang, A comprehensive comparison study between Deep Operator networks neural network and long short-term memory for very short-term prediction of ship motion, J. Hydrodyn. 36, 1167–1180 (2024) [Google Scholar]
  35. K. Zhang, Y. Zuo, H. Zhao, Fourier neural operator for solving subsurface oil/water two-phase flow partial differential equation, Spe J. 27, 1815–1830 (2022) [Google Scholar]
  36. X. Dong, Z. Mao, Y. Sun, Short-term wind power scenario generation based on conditional latent diffusion models, IEEE Trans. Sustain. Energy 15, 1074–1085 (2023) [Google Scholar]
  37. W. Cui, Y. Yuan, L. Tong, Numerical simulation of hydrogen leakage diffusion in seaport hydrogen refueling station, Int. J. Hydrog. Energy, 48, 24521–24535 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.