Open Access
Issue |
Mechanics & Industry
Volume 26, 2025
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/meca/2025003 | |
Published online | 28 February 2025 |
- B. Richard, M. Robin-Boudaoud, E. Viallet, S. Cherubini, J. Berger, F. Voldoire, Overview of the research activities in earthquake engineering and seismic risk assessment within the joint framework CEA-EDF-FRAMATOME-IRSN, in 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26), Berlin, Germany (2022) [Google Scholar]
- K. Sarh, M.H. Papin, P. Guihot, Taking into account the possibility of sliding in earthquake response of overhead cranes, in 10th European conference on earthquake engineering, Rotterdam, Netherlands (1995) [Google Scholar]
- A. Otani, N. Keisuke, J. Suzuki, Vertical seismic response of overhead crane, Nucl. Eng. Des. 212, 211–220 (2002) [CrossRef] [Google Scholar]
- A. Schukin, M. Vayndrakh, Seismic non-linear analysis of polar crane, in 19th International Conference on Structural Mechanics in Reactor Technology (SMIRT-19<), Toronto, Canada (2007) [Google Scholar]
- K. Suzuki, M. Inagaki, T. Iijima, Seismic capacity test of overhead crane under horizontal and vertical excitation, J. Disaster Res. 5, 369–377 (2010) [CrossRef] [Google Scholar]
- C. Feau, I. Politopoulos, G. S. Kamaris, C. Mathey, T. Chaudat, G. Nahas, Experimental and numerical investigation of the earthquake response of crane bridges, Eng. Struct. 84, 89–101 (2015) [CrossRef] [Google Scholar]
- V.B. Nguyen, J. Seo, J. Huh, J.H. Ahn, A. Haldar, Seismic response investigation of 1/20 scale container crane through shake table test and finite element analysis, Ocean Eng. 234, 109266 (2021) [CrossRef] [Google Scholar]
- V.B. Nguyen, J. Huh, B.K. Meisuh, Evaluation of the effect of the vertical component of an earthquake on the seismic response of container cranes using the shake table test, Structures 58, 105590 (2023) [CrossRef] [Google Scholar]
- M. Kettler, P. Zauchner, H. Unterweger, Determination of wheel loads from runway cranes based on rail strain measurement, Eng. Struct. 213, 110546 (2020) [CrossRef] [Google Scholar]
- M. Kettler, T. Jurschitsch, H. Unterweger, Impact of rail joints on the local stresses in crane runway girders, Structures 52, 1087–1100 (2023) [CrossRef] [Google Scholar]
- X. Zhang, Z. Qi, G. Wang, S. Guo, F, Qu, Numerical investigation of the seismic response of a polar crane based on linear complementarity formulation, Eng. Struct. 211, 11046 (2020) [Google Scholar]
- Nuclear Energy Agency OECD/NEA, SOCRAT Benchmark (Seismic simulation of Overhead CRAne on shaking Table), 2020. Available at: https://www.socrat-benchmark.org [Google Scholar]
- F. Fekak, A. Gravouil, M. Brun, B. Depale, A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics, Comput. Mech. 60, 1–21 (2017) [CrossRef] [MathSciNet] [Google Scholar]
- J. Di Stasio, D. Dureisseix, G. Georges, A. Gravouil, An explicit time-integrator with singular mass for non-smooth dynamics, Comput. Mech. 68, 97–112 (2021) [CrossRef] [MathSciNet] [Google Scholar]
- J.H.K. Ambiel, M. Brun, A. Thibon, A. Gravouil, Numerical investigation of the effects of symmetric and eccentric earthquake-induced pounding on accelerations and response spectra for two-storey structures, Soil Dyn. Earthquake Eng. 171, 107930 (2023) [CrossRef] [Google Scholar]
- J.H.K. Ambiel, M. Brun, A. Thibon, A. Gravouil, Three-dimensional analysis of eccentric pounding between two-storey structures using explicit non-smooth dynamics, Eng. Struct. 251, 113385 (2022) [CrossRef] [Google Scholar]
- J-J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in Nonsmooth Mechanics and Applications (Springer, 1988), pp. 1–82 [Google Scholar]
- J-J. Moreau, Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999) [CrossRef] [Google Scholar]
- M. Jean, The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999) [CrossRef] [Google Scholar]
- V. Acary, Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts, Appl. Numer. Math. 62, 1259–1275 (2012) [CrossRef] [MathSciNet] [Google Scholar]
- T. Belytschko, M. Neal, Contact-impact by the pinball algorithm with penalty and Lagrangian methods, Int. J. Numer. Methods Eng. 31, 547–572 (1991) [CrossRef] [Google Scholar]
- T.A. Laursen, Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis, in Computational Contact and Impact Mechanics ( Springer, Berlin, 2002) [Google Scholar]
- N.J. Carpenter, R.L. Taylor, M.G. Katona, Lagrange constraints for transient finite element surface contact, Int. J. Numer. Methods Eng. 32, 103–128 (1991) [CrossRef] [Google Scholar]
- A. Gravouil, A. Combescure, A multi-time-step explicit-implicit method for non-linear structural dynamics, Int. J. Numer. Methods Eng. 50, 199–225 (2001) [CrossRef] [Google Scholar]
- A. Combescure, A. Gravouil, A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis, Comp. Methods Appl. Mech. Eng. 191, 1129–1157 (2002) [CrossRef] [Google Scholar]
- M. Brun, A. Gravouil, A. Combescure, A. Limam, Two FETI-based heterogeneous time step coupling methods for Newmark and alpha-schemes derived from the energy method, Comp. Methods Appl. Mech. Eng. 283, 130–176 (2015) [CrossRef] [Google Scholar]
- A. Gravouil, A. Combescure, M. Brun, Heterogeneous asynchronous time integrators for computational structural dynamics, Int. J. Numer. Methods Eng. 102, 202–232 (2015) [CrossRef] [Google Scholar]
- S. Li, M. Brun, A. Gravouil, F.E. Fekak, Explicit/implicit multi-time step simulation of bridge crane under earthquake with frictional contacts and high-frequency Rayleigh damping, Finite Elements Anal. Des. 220, 103946 (2023) [CrossRef] [Google Scholar]
- T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, New York, 2000) [Google Scholar]
- M. Brun, A. Batti, A. Limam, A. Combescure, Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading, Soil Dyn. Earthquake Eng. 33, 19–37 (2012) [CrossRef] [Google Scholar]
- J. Nunez-Ramirez, J.-C. Marongiu, M. Brun, A. Combescure, A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps, Int. J. Numer. Methods Eng. 109, 1391–1417 (2017) [CrossRef] [Google Scholar]
- A.V. Pinto, P. Pegon, G. Magonette and G. Tsionis, Pseudo-dynamic testing of bridges using non-linear substructuring, Earthquake Eng. Struct. Dyn. 33, 1125–1146 (2004) [CrossRef] [Google Scholar]
- O.S. Bursi, C. Jia, L. Vulcan, S.A. Neild, D.J. Wagg, Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing, Earthquake Eng. Struct. Dyn. 40, 1–19 (2011) [CrossRef] [Google Scholar]
- L. Zuchowski, M. Brun, F. De Martin, Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems, Comptes Rendus Mécanique 346, 408–422 (2018) [Google Scholar]
- M. Brun, F. De Martin, N. Richart, Hybrid asynchronous SEM/FEM co-simulation for seismic nonlinear analysis of concrete gravity dams, Comput. Struct. 245, 106459 (2021) [CrossRef] [Google Scholar]
- O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals (Butterworth-Heinemann, 2013) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.