Open Access
Issue
Mechanics & Industry
Volume 26, 2025
Article Number 9
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2025002
Published online 28 February 2025
  1. B.W. Li, P. Jin, J. Chen, Aeroelastic tailoring of composite rudder skin considering variable angle tow laminates by a hybrid backtracking search-jaya-sine cosine algorithm, Mech. Adv. Mater. Struc. 1, 1–14 (2022) [Google Scholar]
  2. W.R. Wang, Z.G. Wang, S. Wang, H. Deng, H.L. Li, Ablation behavior of rudder wing structure in hypersonic environment, J. Aerosp. Eng. 36, 04023026 (2023) [CrossRef] [Google Scholar]
  3. L.W. Mott, The Development of the Rudder: A Technological Tale (Texas A&M University Press, USA, 1997) [Google Scholar]
  4. W.P. Zhang, F.G. Li, J.C. Ma, X.S. Ning, S.L. Sun, Y.L. Hu, Fluid-structure interaction analysis of the rudder vibrations in propeller wake, Ocean Eng. 265, 112673 (2022) [CrossRef] [Google Scholar]
  5. W.P. Zhang, X.S. Ning, F.G. Li, H. Guo, S.L. Sun, Vibrations of simplified rudder induced by propeller wake, Phys. Fluids 33, 083618 (2021) [CrossRef] [Google Scholar]
  6. S.G. Parafes, I.K. Turkin, On one approach to design of the rudder-drive system taking into account the aeroelastic stability requirements, Russ. Aeronaut. 63, 75–82 (2020) [CrossRef] [Google Scholar]
  7. C. Meng, K.H. Yuan, H.B. He, Static aeroelastic effects on rudder efficiency of flying wing aircraft, in Proceedings of 3rd International Conference on Unmanned Systems, Harbin, China (2020), pp. 727–732 [Google Scholar]
  8. R.T. Haftka, Optimization of flexible wing structures subject to strength and induced drag constraints, AIAA J. 15, 1101–1106 (1977) [Google Scholar]
  9. S. Grihon, L. Krog, D. Bassir, Numerical optimization applied to structure sizing at AIRBUS: a multi-step process, Int. J. Simul. Multidisci. Des. Optim. 3, 432–442 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  10. N. Aage, E. Andreassen, B.S. Lazarov, O. Sigmund, Giga-voxel computational morphogenesis for structural design, Nature 550, 84–86 (2017) [CrossRef] [PubMed] [Google Scholar]
  11. A. Benaouali, S. Kachel, Multidisciplinary design optimization of aircraft wing using commercial software integration, Aerosp. Sci. Technol. 92, 766–776 (2019) [CrossRef] [Google Scholar]
  12. A.J. De-wit, W.F. Lammen, W.J. Vankan, H. Timmermans, T. Van-der-laan, P.D. Ciampa, Aircraft rudder optimization − a multi-level and knowledge-enabled approach, Prog. Aerosp. Sci. 119, 100650 (2020) [CrossRef] [Google Scholar]
  13. D. Bushnell, C. Rankin, Optimum design of stiffened panels with substiffeners, in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, USA (2005), pp. 1932 [Google Scholar]
  14. P. Hao, B. Wang, G. Li, Z. Meng, K. Tian, X.H. Tang, Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method, Thin Wall. Struct. 82, 46–54 (2014) [CrossRef] [Google Scholar]
  15. B. Wang, P. Hao, G. Li, K. Tian, K.F. Du, X.J. Wang, X. Zhang, X.H. Tang, Two-stage size-layout optimization of axially compressed stiffened panels, Struct. Multidiscipl. Optim. 50, 313–327 (2014) [CrossRef] [Google Scholar]
  16. D. Bojczuk, W. Szteleblak, Optimization of layout and shape of stiffeners in 2d structures, Comput. Struct. 86, 1436–1446 (2008) [CrossRef] [Google Scholar]
  17. J.H. Oh, Y.G. Kim, Optimum bolted joints for hybrid composite materials, Compos. Struct. 38, 329–341 (1997) [CrossRef] [Google Scholar]
  18. K.J. Jadee, A.R. Othman, Fiber reinforced composite structure with bolted joint − a review, Key Eng. Mater. 471, 939–944 (2011) [CrossRef] [Google Scholar]
  19. H.H. Gao, J.H. Zhu, W.H. Zhang, Y. Zhou, An improved adaptive constraint aggregation for integrated layout and topology optimization, Comput. Methods Appl. Mech. Eng. 289, 387–408 (2015) [CrossRef] [Google Scholar]
  20. L. Xia, J.H. Zhu, W.H. Zhang, A superelement formulation for the efficient layout design of complex multi-component system, Struct. Multidiscipl. Optim. 45, 643–655 (2012) [CrossRef] [Google Scholar]
  21. L. Xia, J.H. Zhu, W.H. Zhang, Sensitivity analysis with the modified heaviside function for the optimal layout design of multi-component systems, Comput. Methods Appl. Mech. Eng. 241, 142–154 (2012) [CrossRef] [Google Scholar]
  22. D.L. Quan, G.H. Shi, C.Q. Guan, J. Wang, J.H. Luo, F. Song, B. Wang, J.H. Zhu, W.H. Zhang, Applications and challenges of structural optimization in high-speed aerocraft, Mech. Eng. 41, 373–381 (2019) [Google Scholar]
  23. J.H. Zhu, Y.B. Zhao, W.H. Zhang, X.J. Guo, T. Gao, J. Kong, G.H. Shi, Y.J. Xu, D.L. Quan, Bio-inspired feature-driven topology optimization for rudder structure design, Eng. Sci. 5, 46–55 (2018) [Google Scholar]
  24. C. Wang, J.H. Zhu, M.Q. Wu, J. Hou, H. Zhou, L. Meng, C.Y. Li, W.H. Zhang, Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components, Chin. J. Aeronaut. 34, 386–398 (2021) [Google Scholar]
  25. L.L. Song, T. Gao, L. Tang, X.X. Du, J.H. Zhu, Y. Lin, G.H. Shi, H. Liu, G.N. Zhou, W.H. Zhang, An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing, Comput. Struct. 243, 106405 (2021) [CrossRef] [Google Scholar]
  26. M. Zhou, R. Fleury, Y.K. Shyy, H. Thomas, J. Brennan, Progress in topology optimization with manufacturing constraints, in 9th AIAA/ISSMO Symposium on multidisciplinary analysis and optimization, Atlanta, USA (2002), pp. 5614 [Google Scholar]
  27. L. Harzheim, G. Gerhard, A review of optimization of cast parts using topology optimization: ii-topology optimization with manufacturing constraints, Struct. Multidiscipl. Optim. 31, 388–399 (2005) [Google Scholar]
  28. Q. Xia, T.L. Shi, M.Y. Wang, S.Y. Liu, A level set based method for the optimization of cast part, Struct. Multidiscipl. Optim. 41, 735–747 (2010) [CrossRef] [Google Scholar]
  29. S.S. Rao, Optimization of airplane wing structures under landing loads, Comput. Struct. 19, 849–863 (1984) [CrossRef] [Google Scholar]
  30. L. Li, J.Q. Bai, T.B. Guo, X.L. He, Z.Y. Fu, Aerodynamic design of the supersonic aircraft wing-shape and wing-twist optimization, Int. J. Aeronaut. Space Sci. 19, 340–353 (2018) [CrossRef] [Google Scholar]
  31. Z. Qun, Y.L. Ding, H.B. Jin, A layout optimization method of composite wing structures based on carrying efficiency criterion, Chin. J. Aeronaut. 24, 425–433 (2011) [CrossRef] [Google Scholar]
  32. T. Long, Y.F. Wu, Z. Wang, Y.F. Tang, D. Wu, Y. Yu, Efficient aero-structure coupled wing optimization using decomposition and adaptive metamodeling techniques, Aerosp. Sci. Technol. 95, 105496 (2019) [CrossRef] [Google Scholar]
  33. Z.D. Hu, J. Qiu, F. Zhang, Fully parametric optimization designs of wing components, Int. J. Aerosp. Eng. 2020, 8841623 (2020) [Google Scholar]
  34. G.H. Shi, C.Q. Guan, D.L. Quan, D.T. Wu, L. Tang, T. Gao, An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing, Chin. J. Aeronaut. 33, 1252–1259 (2020) [CrossRef] [Google Scholar]
  35. W.L. Ko, L. Gong, Thermostructural analysis of unconventional wing structures of a hyper-x hypersonic flight research vehicle for the Mach 7 mission, Nasa TP-2001–210398 (2001) [Google Scholar]
  36. J.F. Chen, D.J. Wang, D. Yang, Missile and spacecraft structure analysis and design (Northwest University Press, Xian, 1995) [Google Scholar]
  37. E.S. Lee, R.J. Li, Fuzzy multiple objective programming and compromise programming with pareto optimum, Fuzzy Sets Syst. 53, 275–288 (1993) [CrossRef] [Google Scholar]
  38. W.H. Zhang, A compromise programming method using multibounds formulation and dual approach for multicriteria structural optimization, Int. J. Numer. Methods Eng. 58, 661–678 (2003) [CrossRef] [Google Scholar]
  39. H.X. Qin, Q.D. Yang, Compromise programming approach with grey weight factor for structural topology optimization under multiple load conditions, Chin. Quart. Mech. 39, 280 (2018) [Google Scholar]
  40. Z. Luo, J. Yang, L. Chen, A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures, Aerosp. Sci. Technol. 10, 364–373 (2006) [CrossRef] [Google Scholar]
  41. W.C. Fan, Z.M. Xu, B. Wu, Y.S. He, Z.F. Zhang, Structural multi-objective topology optimization and application based on the criteria importance through intercriteria correlation method, Eng. Optim. 54, 830–846 (2022) [CrossRef] [MathSciNet] [Google Scholar]
  42. M.R. Sharifi, S. Akbarifard, K. Qaderi, M.R. Madadi. A new optimization algorithm to solve multi-objective problems, Sci Rep. 11, 20326 (2021) [Google Scholar]
  43. W.J. Fan, Z. Fan, R. Su. Research on multi-objective topology optimization on bus chassis frame, Chin. J. Mech. Eng. 19, 1505–1508 (2008) [Google Scholar]
  44. D.J. Munk, T. Kipouros, G.A. Vio et al., Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization method, Struct Multidisc Optim. 57, 665–688 (2018) [CrossRef] [Google Scholar]
  45. A.V. Velden, D. Kokan, The synaps pointer optimization engine, International design engineering technical conferences and computers and information in engineering conference, Montreal, France, 2002, pp. 159–165 [Google Scholar]
  46. Y.T. Zhu, M. Datar, K. Addepalli, R. Natalie, Optimization of front wheel drive engine mounting system for third order shudder improvement, SAE Int. J. Commer. Veh. 10, 1–7 (2017) [CrossRef] [Google Scholar]
  47. P. Piperni, A. DeBlois, R. Henderson, Development of a multilevel multidisciplinary-optimization capability for an industrial environment, AIAA J. 51, 2335–2352 (2013) [Google Scholar]
  48. J. Yang, F. Wang, Y. Lu, Design of a bistable artificial venus flytrap actuated by low pressure with larger capture range and faster responsiveness, Biomimetics 8, 181 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.