Open Access
Issue
Mechanics & Industry
Volume 26, 2025
Article Number 15
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2025010
Published online 08 April 2025
  1. J. Yao, X. Cao, Y. Zhang, Y. Li, Cross-coupled fuzzy PID control combined with full decoupling compensation method for double cylinder servo control system, J. Mech. Sci. Technol. 32 (5), 2261–2271 (2018). https://doi.org/10.1007/s12206-018-0437-9 [CrossRef] [Google Scholar]
  2. D. Liu, J. Wang, S. Wang, D. Shi, Active disturbance rejection control for electric cylinders with PD-type event-triggering condition, Control Eng. Pract. 100, 104448 (2020). https://doi.org/10.1016/j.conengprac.2020.104448 [Google Scholar]
  3. Y. Liu, X. Gao, X. Yang, Research of control strategy in the large electric cylinder position servo system, Math. Probl. Eng. 2015 (1), 167628 (2015). https://doi.org/10.1155/2015/167628 [Google Scholar]
  4. A.K. Kumawat, R. Kumawat, M. Rawat, R. Rout, Real-time position control of electrohydraulic system using PID controller, Mater. Today: Proc. 47(Part 11), 2966–2969 (2021). https://doi.org/10.1016/j.matpr.2021.05.203 [CrossRef] [Google Scholar]
  5. Y. Yi, H. Qu, Y. Jian, H. Wang, N. Qu, Design of batch automatic testing system based on electric cylinder, J. Phys.: Conf. Ser. 2674 (1), 012006 (2023). https://doi.org/10.1088/1742-6596/2674/1/012006 [CrossRef] [Google Scholar]
  6. Y. Li, G. Chen, L. Chen, Rigid-flexible coupling dynamic modeling and characteristic analysis of the chain ramming mechanism, J. Mech. Sci. Technol. 36 (11), 5383–5397 (2022). https://doi.org/10.1007/s12206-022-1005-x [CrossRef] [Google Scholar]
  7. H.L. Bartlett, S.T. King, M. Goldfarb, B.E. Lawson, Design and assist-as-needed control of a lightly powered prosthetic knee, IEEE Trans. Med. Robot. Bionics 4 (2), 490–501 (2022). https://doi.org/10.1109/TMRB.2022.3161068 [CrossRef] [Google Scholar]
  8. T. Wang, T. Zheng, S. Zhao, D. Sui, J. Zhao, Y. Zhu, Design and control of a series–parallel elastic actuator for a weight-bearing exoskeleton robot, Sensors 22 (3), 1055 (2022). https://doi.org/10.3390/s22031055 [CrossRef] [PubMed] [Google Scholar]
  9. R. Bhattacharjee, S. Kundu, S. Chaudhuri, Evaluation of workspace and coupled motions of an electrohydraulic parallel manipulator, in: Proc. 2021 4th Int. Conf. Electr. Comput. Commun. Technol. (ICECCT), IEEE, Erode, India, 1–8 (2021). https://doi.org/10.1109/ICECCT52121.2021.9616672 [Google Scholar]
  10. Y.H. Park, H.K. Lee, K.T. Park, H.C. Park, Practical behavior of advanced non-linear hydraulic servo system model for a mold oscillating mechanism depending on line volume, J. Mech. Sci. Technol. 30 (3), 975–982 (2016). https://doi.org/10.1007/s12206-016-0201-y [CrossRef] [Google Scholar]
  11. D. Lin, G. Yang, Adaptive robust control for electric cylinder with friction compensation by LuGre model, Vibroengineering PROCEDIA, 39, 52–57 (2021). https://doi.org/10.21595/vp.2021.22182Z. [CrossRef] [Google Scholar]
  12. Geng, Study on the position control of electric cylinder based on fuzzy adaptive PID, International Journal of Robotics and Automation, 35 (3), 242–247 (2020). 10.2316/j.2020.206-5226 [CrossRef] [Google Scholar]
  13. P.H. Gøytil, D. Padovani, M.R. Hansen, Linear time-invariant modelling of electrohydraulic cylinders, in: Proc. 2022 Int. Conf. Electr. Comput. Commun. Mechatron. Eng. (ICECCME), IEEE, Maldives, 1–6 (2022). https://doi.org/10.1109/ICECCME55909.2022.9988490 [Google Scholar]
  14. C.W. Mathews, D.J. Braun, Design of parallel variable stiffness actuators, IEEE Trans. Robot. 39 (1), 768–782 (2023). https://doi.org/10.1109/TRO.2022.3197088 [CrossRef] [Google Scholar]
  15. N. Verbanac, G. Jungmayr, E. Marth, N. Bulić, Reduced-order observer-based position control of a magnetic-geared servo drive, Actuators 13 (1), 6 (2024). https://doi.org/10.3390/act13010006 [Google Scholar]
  16. Q. Zhang, R. Yu, C. Li, Y.H. Chen, J. Gu, Servo robust control of uncertain mechanical systems: application in a compressor/PMSM system, Actuators 11 (2), 42 (2022). https://doi.org/10.3390/act11020042 [Google Scholar]
  17. F. Li, Y. Luo, X. Luo, P. Chen, Y. Chen, Optimal FOPI error voltage control dead-time compensation for PMSM servo system, Fractal Fract. 7 (3), 274 (2023). https://doi.org/10.3390/fractalfract7030274 [CrossRef] [Google Scholar]
  18. H. Yan, J. Li, L. Li, J. Ma, Research of active disturbance rejection controller design for PMSM servo system, J. Phys.: Conf. Ser. 1894 (1), 012039 (2021). https://doi.org/10.1088/1742-6596/1894/1/012039 [CrossRef] [Google Scholar]
  19. Y. Liu, Y. Wang, Y. Wang, An observer-based IT2 TSK FLS compensation controller for PMSM servo systems: design and evaluation, Neural Comput. Appl. 34 (13), 10949–10969 (2022). https://doi.org/10.1007/s00521-022-07020-y [CrossRef] [Google Scholar]
  20. K.U. Yang, J.H. Byun, The synchronous control system design for four electric cylinders, J. Korea Inst. Electron. Commun. Sci. 11 (12), 1209–1218 (2016). https://doi.org/10.13067/jkiecs.2016.11.12.1209 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.