Open Access
Issue |
Mechanics & Industry
Volume 26, 2025
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/meca/2025005 | |
Published online | 04 April 2025 |
- M. Burrows, Jumping performance of planthoppers (Hemiptera, Issidae), J. Exp. Biol. 212, 2844–2855 (2009) [Google Scholar]
- M. Burrows, Energy storage and synchronisation of hind leg movements during jumping in planthopper insects (Hemiptera, Issidae), J. Exp. Biol. 213, 469–478 (2010) [Google Scholar]
- H.C. Bennet-Clark, E.C.A. Lucey, The jump of the flea: a study of the energetics and a model of the mechanism, J. Exp. Biol. 47, 59–76 (1967) [Google Scholar]
- G. Hoyle, Neuromuscular mechanisms of the locust skeletal muscle, Proc. R. Soc. B 143, 343–367 (1955) [Google Scholar]
- T. Weis-Fogh, A rubber-like protein in insect cuticle, J. Exp. Biol. 37, 889–907 (1960) [Google Scholar]
- H.C. Bennet-Clark, The energetics of the jump of the locust Schistocerca Gregaria, J. Exp. Biol. 63, 53–83 (1975) [Google Scholar]
- M. Burrows, Morphology and action of the hind leg joints controlling jumping in froghopper insects, J. Exp. Biol. 209, 4622–4637 (2006) [Google Scholar]
- M. Burrows, S.R. Shaw, G.P. Sutton, Resiling and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects, BMC Biol. 6, 41 (2008) [Google Scholar]
- M. Burrows, Jumping performances of planthoppers (Hemiptera, Issidae), J. Exp. Biol. 212, 2844–2855 (2009) [Google Scholar]
- M. Burrows, P. Bräunig, Actions of motor neurons and leg muscles in jumping by planthopper insects (Hemiptera, Issidae), J. Comparative Neurol. 518, 1349–1369 (2010) [Google Scholar]
- G.P. Sutton, M. Burrows, Biomechanics of jumping in the flea, J. Exp. Biol. 214, 836–847 (2011) [Google Scholar]
- G.P. Sutton, M. Burrows, The mechanics of azimuth control in jumping by froghopper insects, J. Exp. Biol. 213, 1406–1416 (2010) [Google Scholar]
- M. Burrows, Energy storage and synchronization of hind leg movements during jumping in planthoppers insects (Hemiptera, Issidae), J. Exp. Biol. 213, 469–478 (2010) [Google Scholar]
- M. Burrows, G. Sutton, Interacting gears synchronize propulsive leg movements in a jumping insect, AAAS Sci. 341, 1254–1256 (2013) [Google Scholar]
- ISO 53:1998. Cylindrical gears for general and heavy engineering − standard basic rack tooth profile [Google Scholar]
- H.N. Özgüven, D.R. Houser, Mathematical models used in gear dynamics − a review, J. Sound Vibrat. 121, 383–411 (1988) [Google Scholar]
- A. Kahraman, R. Singh, Non-linear dynamics of a spur gear pair, J. Sound Vibr. 142, 49–75 (1990) [Google Scholar]
- P. Velex, M. Maatar, A mathematical model for analyzing the influence of shape deviation and mounting errors on gear behaviour, J. Sound Vibr. 191, 629–660 (1996) [Google Scholar]
- S. Baud, P. Velex, Static and dynamic tooth loading in spur and helical geared systems-experiments and model validation, ASME J. Mech. Des. 124, 334–346 (2002) [Google Scholar]
- L. Vedmar, A. Andersson, A method to determine dynamic loads on spur gear teeth and on bearings, J. Sound Vibr. 267: 1065–1084 (2003) [Google Scholar]
- M. Kubur, A. Kahraman, D.M. Zini, K. Kienzle, Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment, ASME J. Vibrat. Acoust. 126, 398–406 (2004) [Google Scholar]
- T. Eritenel, R.G. Parker, Three-dimensional nonlinear vibration of gear pairs, J. Sound Vibr. 331, 3628–3648 (2012) [Google Scholar]
- R. Martins, J. Seabra, A. Brito, C. Seyfert, R. Luther, A. Igartua, Friction coefficient in FZG gears lubricated with industrial gear oils, biodegradable ester vs. mineral oils, Tribol. Int. 39, 512–521 (2006) [Google Scholar]
- C. Fernandes, R. Martins, J. Seabra, Torque loss of type C40 FZG gears lubricated with wind turbine gear oils, Tribol. Int. 70, 83–93 (2014) [Google Scholar]
- J. Durand de Grevigney, C. Changenet, F. Ville, P. Velex, Thermal modelling of a back-to-back gear box test machine: application to the FZG test rig, Proc. IMechE Part J. 226, 501–515 (2012) [Google Scholar]
- P. Navet, C. Changenet, F. Ville, D. Ghribi, J. Cavoret, Thermal modelling of the FZG test rig: application to starved lubrication conditions, Tribol. Trans. 63, 1135–1146 (2020) [Google Scholar]
- T. Touret, C. Changenet, F. Ville, J. Cavoret, Experimental investigation on the effect of micropitting on friction − part 2: analysis of power losses evolution on a geared system, Tribol. Int. 153, 106551 (2021) [Google Scholar]
- I. Hong, Z. Teaford, A. Kahraman, A comparison of gear tooth bending fatigue lives from single tooth bending and rotating gear tests, Forsch Ingenieurwes 86, 259–271 (2022) [Google Scholar]
- J. Bruyère, P. Velex, Derivation of optimum profile modification in narrow-faced spur and helical gears using a perturbation method, J. Mech. Des. 135, 071009-1-8 (2013) [Google Scholar]
- J. Bruyère, P. Velex, A simplified multi-objective analysis of optimum profile modifications in spur and helical gears, Mech. Machine Theory 80, 70–83 (2014) [Google Scholar]
- T. Jurkschat, T. Lohner, K. Stahl, Improved calculation method for load-dependent gear losses, Forsch Ingenieurwes 81, 109–115 (2017) [Google Scholar]
- K. Cavdar, F. Karpat, Computer aided analysis of bending strength of involute spur gears with asymmetric profile, ASME J. Mech. Des. 127, 477–484 (2005) [Google Scholar]
- N. Pedersen, Improving bending stress in spur gears using asymmetric gears and shape optimization, Mech. Mach. Theory 45, 1707–1720 (2010) [Google Scholar]
- A. Kapelevich, Y. Shekhtman, Analysis and optimization of contact ratio of asymmetric gears, Gear Technol. 66–71 (2017) [Google Scholar]
- S. Mo, Y. Li, B. Luo, L. Wang, H. Bao, G. Cen, Y. Huang, Research on the meshing characteristics of asymmetric gears considering tooth profile deviation, Mech. Mach. Theory 175, 104936 (2022) [Google Scholar]
- Fauna Europaea, https://web.archive.org/web/20161222224218/http://www.faunaeur.org/full_results.php?id=239952, visited 17th June 2024 [Google Scholar]
- British bugs, https://www.britishbugs.org.uk/homoptera/Issidae/Issus_coleoptratus.html, visited 17th June 2024 [Google Scholar]
- J. Vincent, U. Wegst, Design and mechanical properties of insect cuticle, Arthropod Struct. Develop. 33, 187–199 (2004) [Google Scholar]
- Laval University, Analyse dimensionnelle et similitude, Chapitre 5, 1–33 (2024) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.