Open Access
Issue
Mécanique & Industries
Volume 5, Number 1, Janvier/Février 2004
Page(s) 61 - 69
DOI https://doi.org/10.1051/meca:2004007
Published online 24 February 2004
  1. C. Soize, O. Le Fur, Modal identification of weakly nonlinear multidimensional dynamical systems using a stochastic linearization method with random coefficients, Mechanical Systems and Signal Processing, 11 (1997) 37–49 [CrossRef] [Google Scholar]
  2. J.S. Bendat, P.A. Palo, R.N. Coppolino, A general identification technique for nonlinear differential equation of motion, Probabilistic Engineering Mechanics, 7 (1992) 43–61 [CrossRef] [Google Scholar]
  3. A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Pilipchuk, Zevin A.A., Normal Modes and Localization in Nonlinear Systems, John Wiley & Sons, New York, 1996 [Google Scholar]
  4. R. Bouc, The power spectral density of response for a strongly nonlinear random oscillator, Journal of Sound and Vibration, 175 (1994) 317–331 [CrossRef] [Google Scholar]
  5. C. Soize, Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: prediction and identification procedures, Probabilistic Engineering Mechanics, 10 (1995) 143–152 [CrossRef] [Google Scholar]
  6. R. Bouc, M. Defilippi, Multimodal nonlinear spectral response of a beam with impact under random input, Probabilistic Engineering Mechanics, 12 (1997) 163–170 [CrossRef] [Google Scholar]
  7. S. Bellizzi, R. Bouc, Analysis of multi-degree of freedom strongly nonlinear systems with random input. Part I: Nonlinear modes and stochastic averaging, Probabilistic Engineering Mechanics, 14 (1999) 229–244 [CrossRef] [Google Scholar]
  8. R. Bouc, M. Defilippi, A simplified approach of solving multidimensional nonlinear random vibration with application to nonlinear plates. Dans P.D. Spanos éditeur, Computational Stochastic Mechanics, Third International Conference on Computational Stochastic Mechanics, Greece june 1998, A.A. Balkama, Rotterdam, Brookfield, 1999 [Google Scholar]
  9. R. Bouc, Multidimensional Nonlinear Random Vibration: A Linearization Method using Nonlinear Coupled Modes, in Bouc R., Soize C. (Eds.), Progress in stochastic structural dynamics, Journée Nationale Dynamique Stochastique des Structures, Châtillon, France, juin 1999, Publication du LMA-CNRS Marseille, 1999 [Google Scholar]
  10. J.B Roberts, P.D. Spanos, Random Vibration and Statistical Linearization, John Wiley & Sons, Chichester, 1990 [Google Scholar]
  11. J.B. Roberts, P.D. Spanos, Stochastic averaging: an approximate method of solving random vibration problems, International Journal of Non-Linear Mechanics, 21 (1986) 111–134 [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Bellizzi, R. Bouc, Analysis of multi-degree of freedom strongly nonlinear systems with random input. Part II: equivalent linear system with random matrices and power spectral density matrix, Probabilistic Engineering Mechanics 14, (1999) 245–256 [Google Scholar]
  13. S. Bellizzi, M. Defilippi, Nonlinear mechanical systems identification using linear systems with random parameters, International Conference on Structural Systems Identification, Université de Kassel, Allemagne, septembre 2001 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.