Open Access
Mécanique & Industries
Volume 7, Number 4, Juillet-Août 2006
Page(s) 373 - 382
Published online 07 February 2007
  1. L. Ljung, System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987 [Google Scholar]
  2. D. Ewins, Modal Testing: Theory and Practice, Research Studies Press Ltd, Somerset, England, 1995 [Google Scholar]
  3. P. Van Overschee, Subspace Identification: Theory – Implementation – Application, Ph.d. Thesis, Katholieke Universiteit Leuven, Belgium, February 1995 [Google Scholar]
  4. M. Viberg, Subspace-based methods for the identification of linear time-invariant systems, Automatica 31 (1995) 1835–1851 [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung, A statistical perspective on state-space modeling using subspace methods, Proceedings 30th IEEE Conference on Decision and Control, Brighton, England, 1991, pp. 1337–1342 [Google Scholar]
  6. M. Viberg, B. Wahlberg, B. Ottersten, Analysis of state space system identification methods based on instrumental variables and subspace fitting, Automatica 33 (1997) 1603–1616 [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Jansson, B. Wahlberg, A linear regression approach to state-space subspace system identification, Signal Processing 52 (1996) 103–129 [CrossRef] [Google Scholar]
  8. D. Bauer, M.Deistler, W. Scherrer, The analysis of the asymptotic variance of subspace algorithms, IFAC, System Identification, Fukuoka, Japan, 1997, pp. 1037–1041 [Google Scholar]
  9. D. Bauer, M. Deistler, W. Scherrer, Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs, Automatica 35 (1999) 1243–1254 [CrossRef] [Google Scholar]
  10. D. Bauer, M. Jansson, Analysis of the asymptotic properties of the MOESP type of subspace algorithms, Automatica 36 (2000) 497–509 [CrossRef] [Google Scholar]
  11. M. Deistler, K. Peternell, W. Scherrer, Consistency and relative efficiency of subspace methods, Automatica 31 (1995) 1865–1875 [CrossRef] [Google Scholar]
  12. K. Peternell, W. Scherrer, M. Deistler, Statistical analysis of novel subspace identification methods, Signal Processing 52 (1996) 161–177 [CrossRef] [Google Scholar]
  13. T. Knudsen, Consistency analysis of subspace identification methods based on a linear regression approach, Automatica 37 (2001) 81–89 [CrossRef] [Google Scholar]
  14. M. Raffy, C. Gontier, A Subspace method of modal analysis using acceleration signals, Proceedings 20th IMAC, Los Angeles, USA, 2002, pp. 824–830 [Google Scholar]
  15. B. Ottersten, M. Viberg, A subspace-based instrumental variable method for state-space system identification, 10th IFAC Symposium on system identification, Copenhagen, Denmark, 1994 [Google Scholar]
  16. M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung, Performance of subspace-based system identification methods, Proceedings IFAC 93, 7, Sydney, Australia, 1993, 369–372 [Google Scholar]
  17. M. Raffy, C. Gontier, Statistical error on damping ratios in deterministic subspace identification, Proceedings 21th IMAC, Kissimmee, Florida, USA, 2003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.