Open Access
Issue
Mécanique & Industries
Volume 8, Number 3, Mai-Juin 2007
Congrès Mécanique de Grenoble
Page(s) 289 - 297
DOI https://doi.org/10.1051/meca:2007051
Published online 17 August 2007
  1. R. Ghanem, P. Spanos, Stochastic finite elements – A spectral approach, Dover Publications, 2 ed., 2003 [Google Scholar]
  2. C. Soize, R. Ghanem, Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci. Comp. 26 (2004) 395–410 [CrossRef] [MathSciNet] [Google Scholar]
  3. D.M. Ghiocel, R.G. Ghanem, Stochastic finite element analysis of seismic soil-structure interaction, J. Eng. Mech. (ASCE) 128 (2002) 66–77 [CrossRef] [Google Scholar]
  4. O.P. Le Maître, M. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio, A stochastic projection method for fluid flow, II. Random process, J. Comp. Phys. 181 (2002) 9–44 [CrossRef] [Google Scholar]
  5. A. Keese, H. Matthies, Numerical methods and smolyak quadrature for nonlinear stochastic partial differential equations, Technical Report, Technische Universität Braunschweig, 2003 [Google Scholar]
  6. S.K. Choi, R.V Grandhi, R.A. Canfield, C.L. Pettit, Polynomial chaos expansion with Latin Hypercube Sampling for estimating response variability, AIAA J. 45 (2004) 1191–1198 [CrossRef] [Google Scholar]
  7. S.K. Choi, R.V Grandhi, R.A. Canfield, Structural reliability under non-Gaussian stochastic behavior, Computers and Structures 82 (2004) 1113–1121 [CrossRef] [Google Scholar]
  8. M. Berveiller, Éléments-finis stochastiques : approches intrusive et non intrusive pour des analyses de fiabilité, Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2005 [Google Scholar]
  9. P.S. Beran, C.L. Pettit, Uncertainty quantification of limit-cycle oscillations, J. Comp. Phys. 217 (2006) 217–247 [CrossRef] [Google Scholar]
  10. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992 [Google Scholar]
  11. W.J. Morokoff, R.E. Caflisch, Quasi-Monte Carlo integration, J. Comp. Phys. 122 (1995) 218–230 [CrossRef] [Google Scholar]
  12. R.Y. Rubinstein, Simulation and the Monte Carlo methods, John Wiley & Sons, 1981 [Google Scholar]
  13. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 2 (1979) 239–245 [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Malliavin, Stochastic Analysis, Springer, 1997 [Google Scholar]
  15. I.M. Sobol', Sensitivity estimates for nonlinear mathematical models, Math. Modeling & Comp. Exp. 1 (1993) 407–414 [Google Scholar]
  16. A. Saltelli, K. Chan, E.M. Scott, editors, Sensitivity analysis, J. Wiley & Sons, 2000 [Google Scholar]
  17. B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Rel. Eng. Sys. Safety (2007) [Google Scholar]
  18. S.H. Lee, B.M. Kwak, Response surface augmented moment method for efficient reliability analysis, Struct. Safe. 28 (2006) 261–272 [CrossRef] [Google Scholar]
  19. M. Wand, M.C. Jones, Kernel smoothing, Chapman and Hall, 1995 [Google Scholar]
  20. B. Sudret, G. Blatman, M. Berveiller, Quasi random numbers in stochastic finite element analysis – application to global sensitivity analysis, in Proc. 10th Int. Conf. on Applications of Stat. and Prob. in Civil Engineering (ICASP10), Tokyo (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.