Open Access
Issue |
Mécanique & Industries
Volume 9, Number 4, Juillet-Août 2008
|
|
---|---|---|
Page(s) | 273 - 293 | |
DOI | https://doi.org/10.1051/meca:2008033 | |
Published online | 06 January 2009 |
- M. Bigerelle, D. Najjar, A. Iost, Description d'une nouvelle méthode de corrélation entre la rugosité et une propriété de surface, application à la brillance de tôles skin-passées, Revue de Métallurgie 99 (2002) 467–479 [CrossRef] [EDP Sciences] [Google Scholar]
- M. Bigerelle, D. Najjar, A. Iost, Relevance of roughness parameters for description and modelling of machined surfaces, J. Mater. Sci. 38 (2003) 2525–2536 [Google Scholar]
- B. Efron, Bootstrap Methods: Another look at the Jacknife, Ann. Statis. 7 (1979) 1–26 [Google Scholar]
- B. Efron, R.J. Tibshirani, An introduction to the bootstrap, London, Chapman and Hall, 1993 [Google Scholar]
- P. Hall, The bootstrap and the edgeworth expansion, New York, Springer-Verlag, 1992 [Google Scholar]
- J. Shao, D. Tu, The jacknife and the bootstrap, New York, Springer-Verlag, 1996 [Google Scholar]
- M. Bigerelle, A. Iost, Statistical artefacts in the determination of the fractal dimension by the slit island method, Engng. Fracture Mechanics 71 (2004) 1081–1105 [CrossRef] [Google Scholar]
- G. Poulachon, A.L. Moisan, M. Dessoly, Contribution à l'étude des mécanismes de coupe en tournage dur, Mécanique & Industries 3 (2002) 291–299 [CrossRef] [Google Scholar]
- E. Charkaluk, M. Bigerelle, A. Iost, Fractals and fracture, Engng. Fracture Mech. 61 (1998) 119–139 [Google Scholar]
- J. Brewer, L. Di Girolamo, Limitations of fractal dimension estimation algorithms with implications for cloud studies, Atm. Res. 82 (2006) 433–454 [CrossRef] [Google Scholar]
- S. Karube, W. Hoshino, T. Soutone, K. Sato, The non-linear phenomena in vibration cutting system. The establishment of dynamic model, Int. J. Non-Lin. Mech. 37 (2002) 541–564 [CrossRef] [Google Scholar]
- R.F. Gans, When is cutting chaotic?, J. Sound Vibration 188 (1995) 75–83 [Google Scholar]
- M.S. Fofana, Sufficient condition for the stability of single and multiple regenerative chatter, Chaos, Solitons & Fractals 14 (2002) 335–347 [CrossRef] [Google Scholar]
- M.S. Fofana, Effect of regenerative process on the sample stability of a multiple delay differential equation, Chaos, Solitons & Fractals 14 (2002) 301–309 [CrossRef] [MathSciNet] [Google Scholar]
- H.O. Peitgen, H. Jürgens, D. Saupe, Chaos and fractals: New frontiers of science, New York, Springer-Verlag, 1992 [Google Scholar]
- D. Ruelle, Chaotic evolution and strange attractor, Accademia Nazionale Dei Lincei, Cambridge University Press, 1987 [Google Scholar]
- F. Takens, Detecting strange attractors in turbulence, Dynamical systems and turbulence, Lectures notes in mathematics, 898, Springer, New York, 1981 [Google Scholar]
- M. Bigerelle, A. Iost, Calcul de la dimension fractale d'un profil par la méthode des autocorrélations moyennées normées A.M.N, C. R. Acad. Sci. Paris 323 (1996) 669–675 [Google Scholar]
- F.F. Recht, catastrophic thermoplastic shear, J. Appl. Phys. 31 (1964) 189–193 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.