Open Access
Issue
Mécanique & Industries
Volume 11, Number 6, Novembre-Décembre 2010
VCB (Vibrations, Chocs et Bruits)
Page(s) 495 - 504
DOI https://doi.org/10.1051/meca/2010057
Published online 09 December 2010
  1. J. Bodgi, Synchronisation piétons-structure: Application aux vibrations des passerelles souples, Ph.D. thesis, École Nationale des Ponts et Chaussées, 2008 [Google Scholar]
  2. S. Strogatz, D. Abrams, A. McRobie, B. Eckhardt, E. Ott, Theoretical mechanics: Crowd synchrony on the Millenium bridge, Nature 438 (2005) 43–44 [CrossRef] [PubMed] [Google Scholar]
  3. S. Zivanovic, A. Pavic, P. Reynolds, Vibration serviceability of footbridges under human-induced excitation: a litterature review, J. Sound Vib. 279 (2005) 1–74 [Google Scholar]
  4. S. Zivanovic, V. Ravic, I. El-Bahnasy, A. Pavic, Statistical characterisation of parameters defining human walking as observed on an indoor passerelle, in Experimental Vibration Analysis for Civil Engineering Structures, EVACES’07, Porto, Portugal, 219-225 (2007) [Google Scholar]
  5. D.M. Abrams, Two coupled oscillator models: the Millenium bridge and the chimera state, Ph.D. thesis, Cornell University, 2006 [Google Scholar]
  6. J. Bodgi, S. Erlicher, P. Argoul, Lateral vibration of footbridges under crowd-loading: continuous crowd modelling approach, Key Engineering Materials 347 (2007) 685–690 [CrossRef] [Google Scholar]
  7. P. Charles, C. Delavaud, A. Hekimian, J. Renault, T. Saez, Dispositif d’essais sur un modèle de passerelle, rapport d’essais SETRA, 2005 [Google Scholar]
  8. B.D. Hankin, R.A. Wright, Passenger flow in subways, Oper. Res. 9 (1958) 81–88 [CrossRef] [Google Scholar]
  9. D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys. 73 (2002) 1067–1141 [Google Scholar]
  10. L.F. Henderson, The statistics of crowd fluids, Nature 229 (1971) 381–383 [CrossRef] [PubMed] [Google Scholar]
  11. J. Venel, Modélisation mathématique des mouvements de foule, Ph.D. thesis, Laboratoire de Mathématiques, Université Paris XI, Orsay, France, 2008 [Google Scholar]
  12. V. Blue, J. Adler, Cellular automata microsimulation of bi-directional pedestrian flows, J. Transp. Res. Board 1678 (2000) 135–141 [CrossRef] [Google Scholar]
  13. K. Teknomo, Application of microscopic pedestrian simulation model, Transp. Res. Part F 9 (2006) 15–27 [Google Scholar]
  14. S.P. Hoogendoorn, P.H.L. Bovy, W. Daamen, Microscopic pedestrian wayfinding and dynamics modelling, Pedestrian and Evacuation Dynamics (2001) 123–154 [Google Scholar]
  15. D. Helbing, P. Molnar, Social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 4282–4286 [CrossRef] [Google Scholar]
  16. C. Reynolds, Flocks, herds, and schools: A distributed behavioral model, Comput. Graph. 21 (1987) 25–34 [Google Scholar]
  17. S. Paris, J. Pettré, S. Donikian, Pedestrian reactive navigation for crowd simulation: a predictive approach, Comput. Graph. Forum 26 (2007) 665–674 [Google Scholar]
  18. S. Paris, Caractérisation des niveaux de services et modélisation des circulations de personnes dans les lieux d’échanges, Ph.D. thesis, Université de Rennes 1, 2007 [Google Scholar]
  19. M.S. Garcia, Stability, scaling and chaos in passive-dynamic gait models, Ph.D. thesis, Cornell University, 1999 [Google Scholar]
  20. S. Erlicher, A. Trovato, P. Argoul, Modeling the lateral pedestrian force on a rigid floor by a self-sustained oscillator, Mech. Syst. Signal Process 2010 doi:10.1016/j.ymssp.2009.11.006 [Google Scholar]
  21. P.A. Cundall, A computer model for simulating progressive large scale movements of blocky rock systems, in Proc. Symp. Int. Soc. Rock Mech., 1971, Vol. 1 [Google Scholar]
  22. P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47–65 [Google Scholar]
  23. Y. Kishino, Disk model analysis of granular media, Micromechanics of Granular Materials (1988) 143–152 [Google Scholar]
  24. M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Oxford University Press, 1987 [Google Scholar]
  25. M. Jean, J.J. Moreau, Unilaterality and dry friction in the dynamics of rigid bodies collection, Contact Mechanics Int. Symp. (1992) 31–48 [Google Scholar]
  26. M. Frémond, Rigid bodies collisions, Phys. Lett. A 204 (1995) 33–41 [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Radjai, M. Jean, J.J. Moreau, S. Roux, Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett. 77 (1996) 264–277 [Google Scholar]
  28. M. Jean, The non smooth contact dynamics method, Compt. Methods Appl. Math. Eng. 177 (1999) 235–257 [Google Scholar]
  29. L. Paoli, Time discretization of vibro-impact, Phil. Trans. R. Soc. A 359 (2001) 2405–2428 [Google Scholar]
  30. M. Renouf, Optimisation numérique et calcul parallèle pour l’étude des milieux divisés bi- et tridimensionnels, Ph.D. thesis, Université Montpellier II, Sciences et Techniques du Languedoc, 2004 [Google Scholar]
  31. G. Saussine, C. Cholet, P.E. Gautier, F. Dubois, C. Bohatier, J.J. Moreau, Modelling ballast behaviour under dynamic loading, Part 1: a 2d polygonal discrete element method approach, Comput. Meth. Appl. Mech. Eng. 195 (2006) 2841–2859 [Google Scholar]
  32. M. Frémond, Collisions, Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma Tor Vergata, ISBN 978-88-6296-000-7, 2007 [Google Scholar]
  33. J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in J.J. Moreau, P.-D. Panagiotopoulos (ed.) Non Smooth Mechanics and Applications, CISM Courses and Lectures, Vol. 302, Springer-Verlag, Wien, New York, 1988, pp. 1–82 [Google Scholar]
  34. J.J. Moreau, Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids (1994) 93–114 [Google Scholar]
  35. C. Ericson, Real Time Collision Detection, Morgan Haufmann Publishers, 2004 [Google Scholar]
  36. S. Dal Pont, E. Dimnet, A theory for multiple collisions of rigid solids and numerical simulation of granular flow, Int. J. Solids Struct. 43/20 (2006) 6100–6114 [Google Scholar]
  37. S. Dal Pont, E. Dimnet, Theoretical approach to instantaneous collisions and numerical simulation of granular media using the A-CD2 method, Communications in Applied Mathematics and Computational Science, Berkeley 3/1 (2008) 1–24 [Google Scholar]
  38. J.J. Moreau, Sur les lois du frottement, de la viscosité et de la plasticité, C. R. Acad. Sci. Paris 271 (1970) 608–611 [Google Scholar]
  39. R. Kimmel, J.A. Sethian, Fast marching methods for computing distance maps and shortest paths, Technical Report 669, CPAM, University of California, Berkeley, 1996 [Google Scholar]
  40. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamic features of escape panic, Nature 407 (2000) 487–490 [CrossRef] [PubMed] [Google Scholar]
  41. D. Helbing, I. Farkas, P. Molnár, T. Vicsek, Simulation of pedestrians crowds in normal and evacuation situations, M. Schreckenberg and S. Deo Sarma (Ed.), Pedestrian and evacuation dynamics, 2002, pp. 21–58 [Google Scholar]
  42. S. Zivanovic, A. Pavic, P. Reynolds, Probability-based prediction of multi-mode vibration response to walking excitation, Eng. Struct. 29 (2007) 942–954 [CrossRef] [Google Scholar]
  43. T.P. Andriacchi, J.A. Ogle, J.O. Galante, Walking speed as a basis for normal and abnormal gait measurements, J. Biomech. 10 (1977) 261–268 [CrossRef] [PubMed] [Google Scholar]
  44. P. Dallard, A.J. Fitzpatrick, A. Flint, A. Low, R.M. Ridsdill-Smith, The Millenium bridge London – problems and solutions, The Structural Engineer 79 (2001a) 15–17 [Google Scholar]
  45. P. Dallard, A.J. Fitzpatrick, A. Flint, A. Low, R.M. Ridsdill-Smith, The Millenium bridge London, The Structural Engineer 79 (2001b) 17–33 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.