Open Access
Issue
Mécanique & Industries
Volume 12, Number 1, 2011
Page(s) 45 - 65
DOI https://doi.org/10.1051/meca/2011004
Published online 10 February 2011
  1. H.B. Atabek, C.C. Chang, Oscillatory flow near the entry of circular tube, Zamp 12 (1961) 403–422 [Google Scholar]
  2. D.G. Drake, On the flow in a channel due to a periodic pressure gradient, Quart. J. Mech. Appl. Math. l18 (1965) [Google Scholar]
  3. D. Gedeon, Mean parameter modelling of oscillating flow, J. Heat Trans. 108 (1986) 513–518 [CrossRef] [Google Scholar]
  4. S.R. Huebner, A finite difference analysis of heat transfer in periodic cavity flows, Numerical Meth. Laminar Turbulent Flow 6 (1989) 1265–1275 [Google Scholar]
  5. P. André, R. Creff, Étude des conditions particulières de fréquence favorisant les transferts thermiques en écoulements pulsés en canalisation cylindrique, Int. J. Heat Mass Trans. 24 (1981) 1211–1219 [CrossRef] [Google Scholar]
  6. A. Yakhot, L. Grinberg, Phase shift ellipses for pulsating flows, Phys. Fluids 15 (2003) 2081–2083 [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Sevirino, Farias Neto, Simulation numérique du transfert de matière global dans un écoulement tourbillonnaire non entretenu – Cas des forts nombres de Schmidt, 14e Congrès Français de mécanique Toulouse, France, 1999 [Google Scholar]
  8. S. Kakac, Y. Yenner, Exact solutions of transient forced convection energy equation for time with variation of inlet temperature, Int. J. Heat. Mass. Trans. 16 (1973) 2205–2214 [CrossRef] [Google Scholar]
  9. J. Suces, An improved quasi-study approach for transient conjugated forced convection problems, Int. J. Heat. Mass. Trans. 24 (1981) 1711–1722 [CrossRef] [Google Scholar]
  10. M.T. Acker, B. Fourcher, Analyse en régime thermique périodique du couplage conduction convection entre un fluide en écoulement laminaire et une paroi de stockage, Int. J. Heat. Mass. Trans. 24 (1981) 1201–1210 [CrossRef] [Google Scholar]
  11. P. Singh, V. Radhkrishnan, Fluctuation flow due to unsteady rotation of a disk, AIAAA J. 27 (1988) 150–154 [CrossRef] [Google Scholar]
  12. C.T. Aplet, M.A. Ledwich, Heat transfer in transient and unsteady flow past a heated circular cylinder in the range 1 ≤ R ≤ 40, J. Fluid. Mech. 95 (1979) 761–777 [CrossRef] [Google Scholar]
  13. G. Huw, Davies, Fluctuating heat transfer from hot wires in low Reynolds Number, J. Fluid. Mech. 73 (1976) 49–51 [CrossRef] [Google Scholar]
  14. M. Lachi, G. Polidori, M. Rebay, J. Padet, Convention forcée instationnaire sur une plaque soumise à une perturbation de flux périodique, 14e Congrès Français de Mécanique, Toulouse, France, 1999 [Google Scholar]
  15. Majdalani, Pulsatory channel flows with arbitrary pressure gradients, AIAA, 3rd, Theoretical fluid mechanics meeting, 2002, pp. 24–26 [Google Scholar]
  16. T. Zhao, a Numerical Solution of laminar flow convection in a heated pipe subjected to a reciprocating flow, Int. J. Heat. Mass. Trans. 38 (1995) 3011–3022 [CrossRef] [Google Scholar]
  17. Byunng-Hun Kim, Modelling pulsed blowing systems for active flow control. Ph.D. Thesis Chicago, Illinois, 2003 [Google Scholar]
  18. F. Fedel, D. Hitt, R.D. Prabhu, Revisiting the stability of pulsatile pipe flow, Eur. J. Mech. B/Fluids 24 (2005) 237–254 [CrossRef] [Google Scholar]
  19. Hadj Ali, Contribution à l’étude dynamique et thermique d’un écoulement pulsé dans une conduite horizontale en présence d’un obstacle cylindrique chauffé, Thèse de Magister, université USTHB, 2006 [Google Scholar]
  20. P.A. Mackrodt, Stability of Hagen-Poiseuille flow with superimposed rigid rotation, J. Fluid. Mech. 73 (1976) 153–164 [CrossRef] [Google Scholar]
  21. J.M. Owen, J.R. Pincombe, Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid, J. Fluid. Mech. 99 (1980) 111–127 [CrossRef] [Google Scholar]
  22. J. Legrand, F. Couere, Transfert de matière globale liquide-paroi pour des écoulements associant tourbillons de Taylor et circulation axiale forcée, I.J. H.M.T. 25 (1982) 345–351 [CrossRef] [Google Scholar]
  23. F.H. Harlow, J.E. Welch, Numerical calculation of time dependent viscous incompressible flow with free surface, Phys. Fluids 8 (1965) 2182–2190 [NASA ADS] [CrossRef] [Google Scholar]
  24. R. Temam, Sur l’approximation des équations de Navier Stokes par la méthode des pas fractionnaires Arch, Rat. Mech. Anal. 32 (1969) 377–385 [Google Scholar]
  25. M. Fortin, R. Peyret, R. Teman, Résolution numérique des équations de Navier-Stockes pour un fluide incompressible, J. Mech. 10 (1971) 357–390 [Google Scholar]
  26. R. Peyret, Unsteady evolution of a horizontal jet in a stratified fluid, J. Fluid. Mech. 78 (1976) [Google Scholar]
  27. R. Peyret et al., Calcul de l’écoulement d’un fluide visqueux compressible autour d’un obstacle de forme parabolique, Lecture Notes de Physique 19 (1973) 222–229 [CrossRef] [Google Scholar]
  28. A. Ghezal, J.C. Loraud, Écoulement confiné d’un fluide visqueux incompressible autour d’un obstacle cylindro-conique, Mech. Res. Com. 11 (1984) 83–89 [CrossRef] [Google Scholar]
  29. A. Ghezal, J.C. Loraud, Écoulement confiné d’un fluide visqueux incompressible autour d’un obstacle cylindro- conique en mouvement hélicoïdal, Mech. Res. Com. 16 (1989) 183–189 [CrossRef] [Google Scholar]
  30. A. Ghezal, B. Porterie, J.C. Loraud, Modélisation du transfert de chaleur, avec couplage conduction convection, entre un obstacle en mouvement hélicoïdal est un fluide visqueux en écoulement confiné, Int. J. Heat. Mass. Trans. 329–341 (1992) [Google Scholar]
  31. Z. Ouchiha, A. Ghezal, J.C. Loraud, M. Saighi, A. Benzaoui, Digital simulation of a vertical Newtonian fluid flow in the presence of a heated cylindrical obstacle, AMSE 72 (2003) [Google Scholar]
  32. A. Ghezal, Z. Ouchiha, J.C. Loraud, Étude des instabilités dynamique et thermique dans un écoulement autour d’un obstacle chauffé en rotation 17e Congrès Français de Mécanique, Troyes, France, 2005 [Google Scholar]
  33. A. Ghezal, N. Ait Moussa, Z. Ouchiha, J.C. Loraud, Frequency influence on thermal exchange in spiral flow, 4th international conference on heat transfer, fluid mechanics and thermodynamics, Cairo, Hefat Egypt paper number GA, 2005 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.