Open Access
Mechanics & Industry
Volume 13, Number 5, 2012
Page(s) 347 - 352
Published online 30 January 2013
  1. S. Hameury, Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: a numerical study, Build. Environment40 (2005) 1400–1412 [CrossRef] [Google Scholar]
  2. H.M. Kunzel, A. Holm, K. Sedlbauer, F. Antretter, M. Ellinger, Moisture buffering effect of interior linings made from wood or wood based products, Fraunhofer-Institute for Building Physics, IBP Report HTB-04/2004/e, 2004 [Google Scholar]
  3. O.F. Osanyintola, P. Talukdar, C.J. Simonson, Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood, Energy Build. 38 (2006) 1283–1292 [CrossRef] [Google Scholar]
  4. O.F. Osanyintola, C.J. Simonson, Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact, Energy Build. 38 (2006) 1270–1282 [Google Scholar]
  5. C.J. Simonson, M. Salonvaara, T. Ojanen, Moderating indoor conditions with hygroscopic building materials and outdoor ventilation, ASHRAE NA 110 (2004) 804–819 [Google Scholar]
  6. C. JamesC.J. SimonsonP. TalukdarS. Roels Numerical and experimental data set for benchmarking hygroscopic buffering models, Int. J. Heat Mass Transf. 53 (2010) 3638–3654 [CrossRef] [Google Scholar]
  7. D. Medjelekh, S. Abdou, M. El Ganaoui, Impact of the thermal inertia of material on the hygrothermal comfort of building, Int. Rev. Chem. Eng. 2 (2010) 391–397 [Google Scholar]
  8. H. Asan, Effects of wall’s insulation thickness and position on time lag and decrement factor, Energy Build. 28 (1998) 299–305 [CrossRef] [Google Scholar]
  9. H. Asan, Numerical computation of time lags and decrement factors for different building materials, Build. Environment 41 (2006) 615–620 [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Ghazi Wakili, Ch. Tanner, U-value of a dried wall made of perforated porous clay bricks – Hot box measurement versus numerical analysis, Energy Build. 35 (2003) 675–680 [CrossRef] [Google Scholar]
  11. T. Nussbaumer,K. Ghazi Wakili Ch. Tanner, Experimental and numerical investigation of the thermal performance of a protected vacuum insulation system applied to a concrete wall, Appl. Energy 83 (2006) 841–855 [CrossRef] [Google Scholar]
  12. J. Rose, S. Svendsen, Validating numerical calculations against guarded hot box measurements, Nordic J. Build. Phys. 4 (2004) 9 [Google Scholar]
  13. T. Kalamees, J. Vinha, Hygrothermal calculations and laboratory tests on timber-framed wall structures, Build. Environment 38 (2003) 689–697 [CrossRef] [Google Scholar]
  14. Z. Pavlik, R. Cerny, Experimental assessment of hygrothermal performance of an interior thermal insulation system using a laboratory technique simulating on-site conditions, Energy Build. 40 (2008) 673–678 [CrossRef] [Google Scholar]
  15. NF EN ISO 8990, Isolation thermique – Détermination des propriétés de transmission thermique en régime stationnaire, Méthodes à la boîte chaude gardée et calibrée, 2006 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.