Open Access
Mechanics & Industry
Volume 14, Number 4, 2013
Page(s) 253 - 265
Published online 30 September 2013
  1. A.M. Wahl, Mechanical springs, Cleveland, Ohio, Penton Publishing Co., 1963 [Google Scholar]
  2. W.H. Wittrick, On elastic wave propagation in helical springs, Int. J. Mech. Sci. 8 (1966) 25–47 [CrossRef] [Google Scholar]
  3. A.E.H. Love, A treatise on the mathematical theory of elasticity, 4th Editions, Dover Publications, New York, 1927 [Google Scholar]
  4. V.K. Stokes, On the dynamic radial expansion of helical springs due to longitudinal impact, J. Sound Vib. 35 (1974) 77 [CrossRef] [Google Scholar]
  5. B. Gironnet, G. Louradour, Comportement dynamique des ressorts, Techniques de l’Ingénieur BD2 (1983) B610-1-B610-11 [Google Scholar]
  6. V. Yildirim, An efficient numerical method for predicting the natural frequencies of cylindrical helical springs, Int. J. Mech. Sci. 41 (1999) 919–939 [CrossRef] [Google Scholar]
  7. J. Lee, D.J. Thompson, Dynamic stiffness formulation, free vibration and wave motion of helical springs, J. Sound Vib. 239 (2001) 279–320 [Google Scholar]
  8. L. Lee, Free vibration analysis of cylindrical helical springs by the pseudo spectral method, J. Sound Vib. 302 (2007) 185–196 [CrossRef] [Google Scholar]
  9. L.E. Becker, G.G. Chassie, W.L. Cleghorn, On the natural frequencies of helical compression springs, Int. J. Mech. Sci. 44 (2002) 825–841 [Google Scholar]
  10. W. Jiang, T.L. Wang, W.K. Jones, The forced vibration of helical spring, Int. J. Mech. Sci. 34 (1992) 549–563 [CrossRef] [Google Scholar]
  11. S.K. Sinha, G.A. Costello, The numerical solution of the dynamic response of helical springs, Int. J. Numeri. Methods Eng. 12 (1978) 949–961 [CrossRef] [Google Scholar]
  12. J.W. Phillips, G.A. Costello, Large deflections of impacted helical springs,J. Acoust. Soc. America 51 (1971) 967–972 [CrossRef] [Google Scholar]
  13. S. Ayadi, E. Hadj-Taieb, G. Pluvinage, The numerical solution of strain waves propagation in elastic helical springs, Mater. Technol. (2007) 47–52 [Google Scholar]
  14. S. Ayadi, E. Hadj-Taïeb, Influence des caractéristiques mécaniques sur la propagation des ondes de déformations linéaires dans les ressorts hélicoïdaux, Mécaniques et Industries 7 (2006) 551–563 [CrossRef] [EDP Sciences] [Google Scholar]
  15. S. Ayadi, E. Hadj-Taïeb, Simulation numérique du comportement dynamique linéaire des ressorts hélicoïdaux, Trans. Can. Soc. Mech. Eng. 30 (2006) 191–208 [Google Scholar]
  16. A. Lerat, R. Peyret, Sur le choix des schémas aux differences du second ordre fournissant des profils de choc sans oscillations, C.R. Acad. Sci. Paris 277 (1966) 363–366 [Google Scholar]
  17. P.D. Lax, B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Communi. Pure Appl. Math. 17 (1966) 381–398 [Google Scholar]
  18. G.R. Buchanan, Finite Element Analysis, Tata McGraw-Hill Edition, New Delhi, 2004 [Google Scholar]
  19. D.H. Norrie, G. Vries, The Finite Element Method, Acadamie Press Inc., New York, 1973 [Google Scholar]
  20. C. Zienkiewicz, R.L. Taylor, The Finite Element Method, The fourth edition, McGraw-Hill Book Company, U.K., 1988 [Google Scholar]
  21. G. Dhatt, G. Touzot, Une présentation de la méthode des éléments finis, Ed. Maloine SA, Paris, 1984 [Google Scholar]
  22. F. Scheid, Numerical Analysis, Second Edition, Tata McGraw-Hill Edition, New Delhi, 2004 [Google Scholar]
  23. R. Courant Freidrichs, K.H. Lewy, Uber die Partiellen Differenzengleichungen der Mathematischen Physick, Math. Annaen 100 (1928) 32–74 [CrossRef] [Google Scholar]
  24. R.D. Richtmeyer, K.W. Morton, Difference methods for initial value problems, Intersciences Publishers, A Division of Jhon Wylie and Sons, New York, 1967 [Google Scholar]
  25. V. Yildirim, Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs, J. Sound Vib. 252 (2002) 479-491 [CrossRef] [Google Scholar]
  26. C.E. Fröberg, Introduction to numerical analysis, Adison-Wesley Publishing Company, USA, 1979 [Google Scholar]
  27. S. Ayadi, E. Hadj-Taieb, Finite element solution of dynamic response of helical springs, Int. J. Simul. Modell. 7 (2008) 17–28 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.