Open Access
Issue
Mechanics & Industry
Volume 14, Number 5, 2013
Page(s) 335 - 345
DOI https://doi.org/10.1051/meca/2013075
Published online 18 December 2013
  1. T.A. Harris, M.N. Kotzalas, Rolling bearing analysis, Wiley New York, 2001 [Google Scholar]
  2. P.K. Gupta, Advanced dynamics of rolling elements, Springer-Verlag, 1984 [Google Scholar]
  3. M. Tiwari, K. Gupta, O. Prakash, Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor, J. Sound Vib. 238 (2000) 723–756 [Google Scholar]
  4. S.P. Harsha, Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect, Mech. Mach. Theory 41 (2006) 688–706 [CrossRef] [Google Scholar]
  5. N. Tandon, A. Choudhury, An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect, J. Sound Vib. 205 (1997) 275–292 [CrossRef] [Google Scholar]
  6. B. Changqing, X. Qingyu, Dynamic model of ball bearings with internal clearance and waviness, J. Sound Vib. 294 (2009) 23–48 [Google Scholar]
  7. A. Bourdon, C. Bordegaray, Études comparatives de plusieurs modèles de la rigidité des roulements sur le comportement dynamique d’une boîte de vitesses automobile, Mécanique & Industries 8 (2007) 35–49 [CrossRef] [EDP Sciences] [Google Scholar]
  8. L. Zamponi, E. Mermoz, J.M. Linares, Étude des méthodes de calcul des pressions de contact dans les roulements à pistes intégrées des boîtes de transmission aéronautiques, Mécanique & Industries 8 (2007) 567–575 [CrossRef] [EDP Sciences] [Google Scholar]
  9. A.A. Shabana, Dynamics of Multibody Systems, Cambridge University Press, 2005 [Google Scholar]
  10. M. Géradin, A. Cardona, Flexible multibody dynamics: a finite element approach, John Wiley, 2001 [Google Scholar]
  11. P. Flores, J. Ambrósio, J.C.P. Claro, H.M. Lankarani, C.S. Koshy, Lubricated revolute joints in rigid multibody systems, Nonlinear Dynamic 56 (2009) 277–295 [Google Scholar]
  12. Q. Tian, Y. Zhang, L. Chen, P. Flores, Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints, Comput. Struct. 87 (2009) 913–929 [CrossRef] [Google Scholar]
  13. L. Xu, Y. Yang, Y. Li, C. Li, S. Wang, Modeling and analysis of planar multibody systems containing deep groove ball bearing with clearance, Mech. Mach. Theory 56 (2012) 69–88 [CrossRef] [Google Scholar]
  14. L.E. Stacke, D. Fritzson, P. Nordling, BEAST-a rolling bearing simulation tool, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 213 (1999) 63–71 [Google Scholar]
  15. J.J. Kalker, On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction, Thesis, Delft University of Technology, 1967 [Google Scholar]
  16. L. Chevalier, S. Cloupet, A. Eddhahak-Ouni, Contributions à la modélisation simplifiée de la mécanique des contacts roulants, Mécanique & Industries 7 (2005) 155–168 [CrossRef] [EDP Sciences] [Google Scholar]
  17. M. Géradin, A. Cardona, Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra, Comput. Mech. 4 (1988) 115–135 [CrossRef] [Google Scholar]
  18. H.M. Hilber, T. Hughes, R.L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng. Struct. Dyn. 5 (1977) 283–292 [Google Scholar]
  19. K.L. Johnson, Contact Mechanics, Cambridge University Press, 1987 [Google Scholar]
  20. J.T. Oden, J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Comput. Methods Appl. Mech. Eng. 52 (1985) 527–634 [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Machado, P. Moreira, P. Flores, H.M. Lankarani, Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory, Mech. Mach. Theory 53 (2012) 99–121 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.