Open Access
Mechanics & Industry
Volume 17, Number 1, 2016
Article Number 111
Number of page(s) 8
Published online 23 November 2015
  1. B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Thermodynamics for processes in finite time, Acc. Chem. Res. 17 (1984) 266–271 [CrossRef] [Google Scholar]
  2. A. Bejan, Entropy generation on minimization: The new thermodynamics of finite-size device and finite-time processes, J. Appl. Phys. 79 (1996) 1191–1218 [CrossRef] [Google Scholar]
  3. M. Feidt, Thermodynamique et Optimisation Energétique des Systèmes et Procédés, Technique et Documentation, 2nd edn., Lavoisier, Paris, 1996 [Google Scholar]
  4. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999 [Google Scholar]
  5. L. Chen, C. Wu, F. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn. 24 (1999) 327–359 [Google Scholar]
  6. L. Chen, F. Sun, Advances in Finite Time Thermodynamics: Analysis and optimization, Nova Science Publishers, New York, 2004 [Google Scholar]
  7. M. Feidt, Optimal use of energy systems and processes, Int. J. Exergy 5 (2008) 500–531 [CrossRef] [Google Scholar]
  8. S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems, Elsevier, Oxford, 2009 [Google Scholar]
  9. M. Feidt, Thermodynamics applied to reverse cycle machines: a review, Int. J. Refrig. 33 (2010) 1327–1342 [CrossRef] [Google Scholar]
  10. B. Andresen, Current trends in finite-time thermodynamics, Angew. Chem. Int. Edit. 50 (2011) 2690–2704 [Google Scholar]
  11. S.A. Klein, An explanation for observed compression ratios in internal combustion engines, Trans. ASME J. Eng. Gas Turbine Power 113 (1991) 511–513 [CrossRef] [Google Scholar]
  12. C. Wu, D.A. Blank, The effect combustion on a work-optimized endoreversible Otto cycle, J. Energy Inst. 65 (1992) 86–89 [Google Scholar]
  13. D.A. Blank, C. Wu, Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure, Energy Convers. Manage. 34 (1993) 1255–1209 [CrossRef] [Google Scholar]
  14. L. Chen, C. Wu, F. Sun, Heat transfer effects on the network output and efficiency characteristics for an air standard Otto cycle, Energy Convers. Manage. 39 (1998) 643–648 [CrossRef] [Google Scholar]
  15. A. Ficher, K.H. Hoffman, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak, J. Non-Equilib. Thermodyn. 29 (2004) 9–28 [Google Scholar]
  16. O.A. Ozsoysal, Heat loss as a percentage of fuel’s energy in air standard Otto and Diesel cycles, Energy Convers. Manage. 47 (2006) 1051–1062 [CrossRef] [Google Scholar]
  17. S.S. Hou, Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations, Energy Convers. Manage. 48 (2007) 1683–1690 [CrossRef] [Google Scholar]
  18. F. Angulo-Brown, J. Fernandez-Betanzos, C.A. Diaz-Pico, Compression ratio of an optimized Otto-cycle model, Eur. J. Phys. 15 (1994) 38–42 [CrossRef] [Google Scholar]
  19. L. Chen, T. Zheng, F. Sun, C. Wu, The power and efficiency characteristics for an irreversible Otto cycle, Int. J. Ambient Energy 24 (2003) 195–200 [CrossRef] [Google Scholar]
  20. F. Angulo-Brown, J.A. Rocha-Martinez, T.D. Navarrete-Gonzalez, A non-endoreversible Otto cycle model: improving power output and efficiency, J. Phys. D 29 (1996) 80–83 [CrossRef] [Google Scholar]
  21. J. Chen, Y. Zhao, J. He, Optimization criteria for the important parameters of an irreversible Otto heat-engine, Appl. Energy 83 (2006) 228–238 [CrossRef] [Google Scholar]
  22. Y. Zhao, J. Chen, Irreversible Otto heat engine with friction and heat leak losses and its parametric optimum criteria, J. Energy Inst. 81 (2008) 54–58 [CrossRef] [Google Scholar]
  23. M. Feidt, Optimal thermodynamics – new upper bounds, Entropy 11 (2009) 529–547 [CrossRef] [MathSciNet] [Google Scholar]
  24. J.A. Rocha-Matinez, T.D. Navarrete-Gonzalez, C.G. Pavia-Miller, et al., A simplified irreversible Otto-engine model with fluctuations in the combustion heat, Int. J. Ambient Energy 27 (2006) 181–92 [CrossRef] [Google Scholar]
  25. T. Özyer, M. Zhang, R. Alhajj, Integrating multi-objective genetic algorithm based clustering and data partitioning for skyline computation, Appl. Intell. 35 (2011) 110–122 [CrossRef] [Google Scholar]
  26. O. Beatrice, J.R. Brian, H. Franklin, Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows, Appl. Intell. 24 (2006) 17–30 [CrossRef] [Google Scholar]
  27. I. Blecic, A. Cecchini, G. Trunfio, A decision support tool coupling a causal model and a multi-objective genetic algorithm, Appl. Intell. 26 (2007) 125–137 [CrossRef] [Google Scholar]
  28. D.A.V. Veldhuizen, G.B. Lamont, Multiobjective Evolutionary Algorithms Analyzing the State-of-the-Art, Evol. Comput. 8 (2000) 125–147 [CrossRef] [PubMed] [Google Scholar]
  29. A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Safety 91 (2006) 992–1007 [CrossRef] [Google Scholar]
  30. S. Toghyani, A. Kasaeian, M.H. Ahmadi, Multi-objective optimization of Stirling engine using non-ideal adiabatic method, Energy Convers. Manage. 80 (2014) 54–62 [Google Scholar]
  31. M.H. Ahmadi, H. Sayyaadi, A.H. Mohammadi, M.A. Barranco-Jimenez, Thermo-economic Multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm, Energy Convers. Manage. 73 (2013) 370–380 [CrossRef] [Google Scholar]
  32. S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell-Boltzmann gas, Energy Convers. Manage. 101 (2015) 592–605 [CrossRef] [Google Scholar]
  33. M.H. Ahmadi, M.A. Ahmadi, Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle, Energy Convers. Manage. 89 (2015) 147–155 [CrossRef] [Google Scholar]
  34. M.H. Ahmadi, M.A. Ahmadi, A.H. Mohammadi, M. Mehrpooya, M. Feidt, Thermodynamic optimization of Stirling heat pump based on multiple criteria, Energy Convers. Manage. 80 (2014) 319–328 [CrossRef] [Google Scholar]
  35. M.H. Ahmadi, M.A. Ahmadi, M. Mehrpooya, M. Sameti, Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump, Energy Conversion and Management 90 (2015) 175–183 [Google Scholar]
  36. S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energy Conversion and Management, 94 (2015) 124–129 [Google Scholar]
  37. S.A. Sadatsakkak, M.H. Ahmadi, R. Bayat, S.M. Pourkiaei, M. Feidt, Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management 93 (2015) 31–39 [Google Scholar]
  38. Y. Ge, L. Chen, F. Sun, Ecological Optimization of an Irreversible Otto Cycle, Arab J. Sci. Eng. 38 (2013) 373–381 [CrossRef] [Google Scholar]
  39. Y. Ge, L. Chen, F. Sun, Finite time thermodynamic modeling and analysis for an irreversible Otto cycle, Appl. Energy 85 (2008) 618–624 [CrossRef] [Google Scholar]
  40. M. Mozurkewich, R.S. Berry, Finite-time thermodynamics: engine performance improved by optimized piston motion, Proc. Natl. Acad. Sci. USA 78 (1981) 1986– 1988 [CrossRef] [Google Scholar]
  41. M. Mozurkewich, R.S. Berry, Optimal paths for thermodynamic systems: the ideal Otto cycle, J. Appl. Phys. 53 (1982) 34–42 [CrossRef] [Google Scholar]
  42. L. Chen, Y. Ge, F. Sun, C. Wu, Effects of heat transfer friction and variable specific heats of working fluid on performance of an irreversible Dual cycle, Energy Convers. Manage. 47 (2006) 3224–3234 [CrossRef] [Google Scholar]
  43. L. Chen, J. Zhou, F. Sun, C. Wu, Ecological optimization for generalized irreversible Carnot engines, Appl. Energy 77 (2004) 327–338 [CrossRef] [Google Scholar]
  44. T.D. Back, Z. Fogel Michalewicz, Handbook of evolutionary computation, Oxford Univ. Press, 1997 [Google Scholar]
  45. M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss, Renew. Energy 60 (2013) 313–322 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.