Open Access
Issue
Mechanics & Industry
Volume 17, Number 3, 2016
Article Number 302
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2015060
Published online 08 February 2016
  1. G.D.V. Davis, Natural convection of air in a square cavity a bench mark numerical solution, Int. J. Numer. Methods Fluids 3 (1983) 249–264 [CrossRef] [Google Scholar]
  2. P. Le Quere, Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. Fluids 20 (1991) 29 [CrossRef] [Google Scholar]
  3. L. Adjlout, O. Imine, A. Azzi, M. Belkadi, Laminar natural convection in an inclined cavity with a wavy wall. Int. J. Heat Mass Transfer 45 (2002) 2141–2152 [CrossRef] [Google Scholar]
  4. P.K. Das, S. Mahmud, Numerical investigation of natural convection inside a wavy enclosure, Int. J. Thermal Sci. 42 (2003) 397–406 [CrossRef] [Google Scholar]
  5. A. Dalal, M.K. Das, Laminar natural convection in an inclined complicated cavity with spatially variable wall temperature, Int. J. Heat Mass Transfer 48 (2005) 3833–3854 [CrossRef] [Google Scholar]
  6. W. Gao, W. Lin, T. Liu, C. Xia, Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters, Appl. Energy 84 (2007) 425–441 [CrossRef] [Google Scholar]
  7. Y. Varol, H.F. Oztop, Free convection in a shallow wavy enclosure, Int. Commun. Heat Mass Transfer 33 (2006) 764–771 [CrossRef] [Google Scholar]
  8. Y. Varol, H.F. Oztop, A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors, Building and Environment 43 (2008) 1535–1544 [CrossRef] [Google Scholar]
  9. S. Saha, T. Sultana, G. Saha, M.M. Rahman, Effects of discrete isoflux heat source size and angle of inclination on natural convection heat transfer flow inside a sinusoidal corrugated enclosure, Int. Commun. Heat Mass Transfer 35 (2008) 1288–1296 [CrossRef] [Google Scholar]
  10. A. S. Bendehina, O. Imine, L. Adjlout, Laminar free convection in undulated cavity with non-uniform boundary conditions, C. R. Mecanique 339 (2011) 42–57 [CrossRef] [Google Scholar]
  11. C. Chen, C. Cheng, Predictions of buoyancy-induced flow in various across-shape concave enclosures, Int. Commun. Heat Mass Transfer 38 (2011) 442–448 [CrossRef] [Google Scholar]
  12. R. Nasrin, S. Parvin, M.A. Alim, Effect of Prandtl number on free convection in a solar collector filled with nanofluid, Proc. Eng. 56 (2013) 54–62 [CrossRef] [Google Scholar]
  13. M.M. Rahman, S. Mojumder, S. Saha, S. Mekhilef, R. Saidur, Augmentation of natural convection heat transfer in triangular shape solar collector by utilizing water based nanfluids having a corrugated bottom wall, Int. Commun. Heat Mass Transfer 50 (2014) 117–127 [CrossRef] [Google Scholar]
  14. A. Sahi, D. Sadaoui, B. Meziani, and K. Mansouri, Effects of thermal boundary conditions, surface radiation and aspect ratio on thermal performance in “T” shallow cavity, Mechanics & Industry 15 (2014) 557–568 [CrossRef] [EDP Sciences] [Google Scholar]
  15. G. Lauriat, Combined radiation-convection in gray fluids enclosed in vertical cavities, J. Heat Transfer 104 (1982) 609–615 [CrossRef] [Google Scholar]
  16. E. H. Ridouane, M. Hasnaoui, A. Amahmid, A. Raji, Interact between natural convection and radiation in a square cavity heated from below, Numer. Heat Transfer Part A 45 (2004) 289–311 [CrossRef] [Google Scholar]
  17. H. Wang, S. Xin, P. Le Quéré, Étude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d’air, C. R. Acad. Sci. Mécanique 334 (2006) 48–57 [Google Scholar]
  18. H. Bouali, A. Mezrhab, H. Amaoui, M. Bouzidi, Radiation-natural convection heat transfer in an inclined rectangular enclosure, Int. J. Thermal Sci. 45 (2006) 553–566 [CrossRef] [Google Scholar]
  19. A. Mezrhab, M. Jami, M. Bouzidi, P. Lallemand, Analysis of radiation-natural convection in a divided enclosure using lattice Boltzmann method, Comp. Fluids 36 (2007) 423–434 [CrossRef] [Google Scholar]
  20. S. Amraqui, A. Mezrhab, C. Abid, Computation of coupled surface radiation and natural convection in an inclined “T” form cavity, Energy Conversion Management 52 (2011) 1166–1174 [CrossRef] [Google Scholar]
  21. R. Alvarado, J. Xamán, J. Hinojosa, G. Álvarez, Interaction between natural convection and surface thermal radiation in tilted slender cavities, Int. J. Thermal Sci. 47 (2008) 355–368 [CrossRef] [Google Scholar]
  22. H. F. Nouanegue, A. Muftuoglu, E. Bilgen, Heat transfer by natural convection, conduction and radiation in an inclined square enclosure bounded with a solid wall, Int. J. Thermal Sci. 48 (2009) 871–880 [CrossRef] [Google Scholar]
  23. M. Ashish Gad, C. Balaji, Effect of surface radiation on RBC in cavities heated from below, Int. Commun. Heat Mass Transfer 37 (2010) 1459–1464 [CrossRef] [Google Scholar]
  24. V. Vivek, Anil Kumar Sharma, C. Balaji, Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures, Int. J. Thermal Sci. 60 (2012) 70–84 [CrossRef] [Google Scholar]
  25. H. C. Hottel, A.F. Saroffim, Radiative Heat Transfer, Mc Graw Hill, New York, 1967 [Google Scholar]
  26. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, 1980 [Google Scholar]
  27. H. John, I.V. Lienhard, H. John, V. Lienhard, A Heat Transfer Textbook 3rd edition, Phlogiston Press, Cambridge, Massachusetts, USA, 2004 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.