Open Access
Mechanics & Industry
Volume 17, Number 7, 2016
STANKIN: Advanced scientific studies and research in Mechanical Engineering
Article Number 711
Number of page(s) 11
Published online 30 December 2016
  1. H. Tönshoff, T. Friemuth, P. Andrae, R. Amor, High-speed or high-performance cutting – a comparison of new machining technologies. Production Engineering. Res. Academic Soc. Production Eng. VIII/1 (2001) 1–8 [Google Scholar]
  2. A. Vereschaka, A. Vereschaka, D. Klauch, D. Lytkin, A. Batako, High-efficiency machining of hard-to-cut materials used in heavy power engineering through the use of carbide tools with nano-scale multiphase coatings, Procedia CIRP 46 (2016) 356–359 [CrossRef] [Google Scholar]
  3. F. Klocke, K. Gerschwiler, Producing Turbine components – modern cutting materials improve productivity, in: Uhlmann, E. (ed.), Proceedings of IX Internationales Produktionstechnisches Kolloquium (PTK 98), Berlin, Germany, 1998, pp. 203–209 [Google Scholar]
  4. E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys, Int. J. Mach. Tool Manuf. 45 (2005) 1353–1367 [Google Scholar]
  5. DIN 6584-1982, Terms of the cutting technique; forces, energy, work, power, 1982 [Google Scholar]
  6. F. Kafkas, An experimental study on cutting forces in the threading and the side cut turning with coated and uncoated grades, J. Manuf. Sci. Eng. 132 (2010) 041012 [CrossRef] [Google Scholar]
  7. G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. Konig, R. Teti, Tool condition monitoring (TCM) – the status of research and industrial application, CIRP Ann. Manuf. Technol. 44 (1995) 541–567 [Google Scholar]
  8. A.A. Vereschaka, M.A. Volosova, A.D. Batako, A.S. Vereshchaka, B.Y. Mokritskii, Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition, J. Nano Res. 84 (2016) 1471–1482 [Google Scholar]
  9. A.A. Vereschaka, A.S. Vereschaka, J.I. Bublikov, A.Y. Aksenenko, N.N. Sitnikov, Study of properties of nanostructured multilayer composite coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N, J. Nano Res. 40 (2016) 90–98 [CrossRef] [Google Scholar]
  10. A.S. Vereschaka, A.A. Vereschaka, D.V. Sladkov, A. Yu. Aksenenko, N.N. Sitnikov, Control of structure and properties of nanostructured multilayer composite coatings applied to cutting tools as a way to improve efficiency of technological cutting operation, J. Nano Res. 37 (2016) 51–57 [CrossRef] [Google Scholar]
  11. A.A. Vereshchaka, A.S. Vereshchaka, O. Mgaloblishvili, M.N. Morgan, A.D. Batako, Nano-scale multilayered-composite coatings for the cutting tools, Int. J. Adv. Manuf. Technol. 72 (2014) 303–317 [CrossRef] [Google Scholar]
  12. G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, G.K. Dosbaeva. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions, Surf. Coat. Technol. 200 (2005) 1804–1813 [CrossRef] [Google Scholar]
  13. T. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal machining – theory and applications, John Wiley and Sons, NewYork, 2000 [Google Scholar]
  14. A.O. Volkhonskii, A.A. Vereshchaka, I.V. Blinkov, A.S. Vereshchaka, A.D. Batako, Filtered cathodic vacuum arc deposition of nano-layered composite coatings for machining hard-to-cut materials, Int. J. Adv. Manuf. Technol. 84 (2016) 1647–1660 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.