Open Access
Mechanics & Industry
Volume 18, Number 6, 2017
Article Number 604
Number of page(s) 13
Published online 02 February 2018
  1. G.Z. Liu, D.H. Li, L.G. Huang, D.X. Zhang, Experiments on corrosion mechanism and performance evolution rule of GFRP in salt steam environment, FRP/CM 1 (2008) 35–40 [Google Scholar]
  2. G. Huang, S. Hong Xia, Effect of water absorption on the mechanical properties of glass-polyester composites, Mater. Des. 28 (2007) 1647–1650 [CrossRef] [Google Scholar]
  3. S. Pavlidou, C.D. Papaspyrides, The effect of hygrothermal history on water absorption and interlaminar shear strength of glass-polyester composites with different interfacial strength, Compos. A 34 (2003) 1117–1124 [CrossRef] [Google Scholar]
  4. K. Takafumi, R.A. Pearson, The moisture effect on the fatigue crack of glass particle and fiber reinforced epoxies with strong and weak bending conditions part 2: a microscopic study on toughening mechanism, Compos. Sci. Technol. 64 (2004) 1991–2007 [CrossRef] [Google Scholar]
  5. J. Zhang, M. Zhang, Visual experiments for water absorbing process of fibre-reinforced composites, J. Compos. Mater. 38 (2004) 779–790 [CrossRef] [Google Scholar]
  6. A. Kootsooks, A.P. Mouritz, Seawater durability of glass and carbon polymer composites, Compos. Sci. Technol. 64 (2004) 1503–1511 [CrossRef] [Google Scholar]
  7. V.A. Alvarez, A. Vazquez, Effect of water absorption on the flexural properties of fully biodegradable composites, J. Compos. Mater. 38 (2004) 1165–1181 [CrossRef] [Google Scholar]
  8. I. Krystyna, G. Laurent, The effect of water immersion ageing on low-velocity impact behaviour of woven aramid-glass fibre/epoxy composites, Compos. Sci. Technol. 64 (2004) 2271–228 [CrossRef] [Google Scholar]
  9. E.P. Gellert, D.M. Turley, Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications, Composites 30 (1999) 1259–1265 [CrossRef] [Google Scholar]
  10. Y. Shan, K. Liao, Environmental fatigue of unidirectional glass-carbon fiber reinforced hybrid composite, Compos. B: Eng. 32 (2001) 355–363 [CrossRef] [Google Scholar]
  11. T.K. Tsotsis, S. Keller, K. Lee, J. Bardisc, J. Bishd, Aging of polymeric composite specimens for 5000 hat elevated pressure and temperature, Compos. Sci. Technol. 61 (2001) 75–86 [CrossRef] [Google Scholar]
  12. S. Marais, M. Metayer, T.Q. Nguyen, M. Labbe, J.M. Saiter, Diffusion and permeation of water through unsaturated polyester resins − influence of resin curing, Eur. Polymer J. 36 (2000) 453–462 [CrossRef] [Google Scholar]
  13. L.H. Strait, M.L. Karasek, M.F. Amateau, Effects of seawater immersion on impact resistance of glass fibre reinforced epoxy composites, J. Compos. Mater. 26 (1992) 2118–2133 [CrossRef] [Google Scholar]
  14. L. Gautier, B. Mortaigne, V. Bellenger, J. Verdu, Osmotic cracking in unsatured polyester matrices under humid environment, J. Appl. Polym. Sci. 79 (2001) 2517–2526 [CrossRef] [Google Scholar]
  15. A.P. Mouritz, J. Gallagher, A.A. Goodwin, Flexural strength and interlaminar shear strength of stitched GRP laminates following repeated impacts, Compos. Sci. Technol. 57 (1997) 509–522 [CrossRef] [Google Scholar]
  16. E. Wu, K. Shyu, Response of composite laminates to contact loads and relationship to low-velocity impact, J. Compos. Mater. 27 (1993) 1443–1464 [CrossRef] [Google Scholar]
  17. M.S. Found, I.C. Howard, Single and multiple impact behavior of a CFRP laminate, Compos. Struct. 32 (1995) 159–163 [CrossRef] [Google Scholar]
  18. D. Ray, B.K. Sarkar, N.R. Bose, Impact fatigue of glass fibre-vinylester resin composites, Compos. A: Appl. Sci. Manuf. 32 (2001) 871–876 [CrossRef] [Google Scholar]
  19. D. Ray, B.K. Sarkar, N.R. Bose, Impact fatigue behaviour of vinylester resin matrix composites reinforced with alkali treated jute fibres, Compos. A: Appl. Sci Manuf. 33 (2002) 233–241 [CrossRef] [Google Scholar]
  20. K. Takafumi K, R.A. Pearson, The moisture effect on the fatigue crack of glass particle and fibre reinforced epoxies with strong and weak bending conditions part 2. A microscopic study on toughening mechanism, Compos. Sci. Technol. 64 (2004) 1991–2007 [CrossRef] [Google Scholar]
  21. A. El Mahi, A. Bezzazi, Describing the flexural behaviour of cross-ply lamonates under cyclic fatigue, Appl. Compos. Mater. 16 (2009) 33–53 [CrossRef] [Google Scholar]
  22. K. Kanny, H. Mahfuz, Flexural fatigue characteristics of sandwich structures at different loading frequencies, Compos. Struct. 67 (2005) 403–410 [CrossRef] [Google Scholar]
  23. G. Belingardi, P. Martella, L. Perom, Fatigue analysis of honeycolb composite sandwich beams, Compos. A: Appl. Sci. Manuf. 38 (2007) 1183–1191 [Google Scholar]
  24. Y.M. Jen, H.B. Lin, Temperature-dependent monotonic and fatigue bending strengths of adhesively bonded aluminium honeycomb sandwich beams, Mater Design 45 (2013) 393–406 [CrossRef] [Google Scholar]
  25. M.Z. Hassan, Z.W. Guan, W.J. Cantwell, G.S. Langdin, G.N. Nurick, The influence of core density on the blast resistance of foam-based sandwich structures, Int. J. Impact Eng. 50 (2012) 9–16 [CrossRef] [Google Scholar]
  26. Y.M. Jen, L.Y. Chang, Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams, Eng. Fail. Anal. 30 (2009) 1282–1293 [CrossRef] [Google Scholar]
  27. W. Boukharouba, A. Bezzazi, F. Scarpa, Identification and prediction of cyclic fatigue behaviour in sandwich panels, Measurement 54 (2014) 161–170 [CrossRef] [Google Scholar]
  28. G. Mirouzi, B. Redjel, D. Rangeard, B. Kebaili, Influence of E short glass fiber and glass texture reinforcement mode and rate on the mechanical performances of resin concretes, J. Mater. Environ. Sci. 7 (5) (2016) 1759–1772 [Google Scholar]
  29. P. Krawczak, Essais des plastiques renforcés Techniques de l'Ingénieur, traité plastiques et composites (1997) AM5405 1–26 [Google Scholar]
  30. ASTM D-790-81, Flexural properties of unreinforced and reinforced plastics and electrical insulation, Annual Book of ASTM Standard (2007) 403–405 [Google Scholar]
  31. A. Apicella, C. Migliaresi, L. Nicolais, S. Roccotelli, The water aging of unsaturated polyester-based composites: influence of resin chemical structure, Composites 14 (1983) 387–392 [CrossRef] [Google Scholar]
  32. G. Huang, Behaviors of glass fiber/unsaturated polyester composites under sea water environment, Mater. Des. 30 (2009) 1337–1340 [CrossRef] [Google Scholar]
  33. P. Davies, F. Pomies, L.A. Carlssion, Influence of water absorption on transverse tensile properties and shear fracture toughness of glass/polypropylene, J. Compos. Mater. (1996) 30 1004–1019 [CrossRef] [Google Scholar]
  34. A.N. Fraga, V.A. Alvarez, O. De la Osa, A. Vazquez, Relationship between dynamical mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites, J. Compos. Mater. 37 (2003) 1553–1574 [CrossRef] [Google Scholar]
  35. B. Wei, H. Cao, S. Song, Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater, Corros. Sci. 53 (2011) 426–431 [CrossRef] [Google Scholar]
  36. B. Wei, H.L. Cao, S.H. Song, Environmental resistance and mechanical performance of basalt and glass fibers, Mater. Sci. Eng. A 527 (2010) 4708–4715 [Google Scholar]
  37. M.C. Wang, Z.G. Zhang, Y.B. Li, M. Li, Z.J. Sun, Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites, J. Reinf. Plast. Compos. 27 (2008) 393–407 [Google Scholar]
  38. C. Suri, H. Hamada, K. Koyama, Blister appearance in thermoplastic composites, Adv. Compos. Mater. 10 (2001) 63–75 [CrossRef] [Google Scholar]
  39. H.N. Dhakal, Z.Y. Zhang, M.O.W. Richardson, Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Compos. Sci. Technol. 67 (2007) 1674–1683 [Google Scholar]
  40. D.E. Mouzakis, H. Zoga, C. Galiotis, Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs), Compos. B 39 (2008) 467–475 [CrossRef] [Google Scholar]
  41. Y. Menail, A. El Mahi, M. Assarar, B. Redjel, A. Kondratas, The effects of water aging on the mechanical properties of glass-fiber and kevlar-epoxy composite materials, Mechan., Nr2 57 (2009) 8–13 [Google Scholar]
  42. C. Alves, A.P.S. Dias, A.C. Diogo, P.M.C. Ferrao, S.M. Luz, A.J. Silva, L. Reis, M. Freitas Eco-composite: the effects of the jute fiber treatments on the mechanical and environmental performance of the composite materials, J. Compos. Mater. 45 (5) (2011) 573–589 [CrossRef] [Google Scholar]
  43. J.F. Mandell, D.D. Huang, F.J. Mc Garry, in: B.A. Sanders (ed.), Short Fiber Reinforced Composite Materials ASTM STP 772 (1982) 3–32 [CrossRef] [Google Scholar]
  44. B. Redjel, Fatigue damage in short fiber reinforced composite materials, in: S. Degallaix, C. Bathias, R. Fougères (eds.), 8th International conference on fatigue of composites, SF2M, Eighth international spring meeting, Paris, France, 1997, pp. 165–172 [Google Scholar]
  45. C. Kuttner, A. Hanisch, A. Schmalz, H. Eder, M.H. Schlaad, I. Burgert, A. Fery, Influence of the polymeric interphase design on the interfacial properties of fiber-reinforced composites, Appl. Mater. Interfaces 5 (2013) 2469–2478 [CrossRef] [Google Scholar]
  46. S. Sanghamitra, C.R. Bankim, Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability, Adv. Colloid Interface Sci. 217 (2015) 43–67 [CrossRef] [PubMed] [Google Scholar]
  47. Y. Menail, A. El Mahi, B. Redjel, M. Assarar, Vieillissement en eau de mer d'un matériau composite Kevlar époxyde, J. Mater. Process. Environ. 2 (2014) 59–66 [Google Scholar]
  48. Y. Menail, A. El Mahi, M. Assarar, B. Redjel, Acoustic emission monitoring of damage mechanisms an aramid-epoxy composite after tensile fatigue and aging seawater, Mechanics 22 (2016) 14–18 [CrossRef] [Google Scholar]
  49. J.F. Mandell, F.J. Mc Garry, D.D. Huang, C.G. Li, Some effects of matrix and interface properties on their fatigue of short fiber reinforced thermoplastics, Polymer Compos. 4 (1983) 32–39 [CrossRef] [Google Scholar]
  50. D. Vigneron, mécanique de renforcement et mécanismes de rupture dans les polyamides renforcés par fibres courtes, Thèse de Doctorat, Université de Technologie de Compiègne (UTC), France, 1983 [Google Scholar]
  51. A. Roy, J. Royer, P. Davies, Fatigue behavior of marine composites: from specimen to structures, in: S. Degallaix, C. Bathias, R. Fougères (Eds.), 8th international conference on fatigue of composites, SF2M, eighth international spring meeting, Paris, France, 1997, pp. 165–172 [Google Scholar]
  52. B. Harris, Fatigue behaviour of polymer based composites, in: A.H. Cardan (Ed.), Durability analysis of composite structural systems, Balkema, 1996, pp. [Google Scholar]
  53. M.G. Dominguez-Almaraz, Prediction of very high cycle fatigue failure for high strength steels based on the inclusion geometrical properties, Mech. Mater. 40 (2008) 636–640 [CrossRef] [Google Scholar]
  54. N. Ngarmaïm, B. Tikri, B. Bassa, N. Kimtangar, F. Pennec, J.-L. Robert, A new expression of the curve S-N in fatigue based on the concept of the “weakest link” of weibull, Global J. Res. Eng.: Mech. Mech. Eng. 14 (2014) 21–26 [Google Scholar]
  55. C. Bathias, J.P. Baillon, La fatigue des matériaux et des structures Collection UTC, (Ed.) SA Maloine, Paris, France, 1980 [Google Scholar]
  56. H. Hwang, K.S. Han, Fatigue of composites-fatigue modulus concept and life prediction, J. Compos. Mater. 20 (1986) 154–165 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.