Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 710
Number of page(s) 8
Published online 30 December 2017
  1. S.N. Grigoriev, Study of cutting properties and wear pattern of carbide tools with comprehensive chemical-thermal treatment and nano-structured/gradient wear-resistant coatings, Mech. Ind. 17 (2016) 702 [Google Scholar]
  2. V.V. Kuzin, M.Yu. Fedorov, M.A. Volosova, Nitride ceramic surface layer stressed state transformation with a change in TiC-coating thickness. Stress – distributed force load version, Refract. Ind. Ceram. 57 (2017) 551–556 [CrossRef] [Google Scholar]
  3. P.H. Bottger, E. Lewin, J. Patscheider, V. Shklover, D.G. Cahill, R. Ghisleni, M. Sobiech, Thermal conductivity of hard oxynitride coatings, Thin Solid Films 549 (2013) 232–238 [CrossRef] [Google Scholar]
  4. J. Nohava, P. Dessarzin, P. Karvankova, M. Morstein, Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures, Tribol. Int. 81 (2015) 231–239 [CrossRef] [Google Scholar]
  5. S.N. Grigoriev, S.V. Fedorov, Tool material surface alloying by wide-aperture low-energy high-current electron-beam treatment before wear-resistant coating, Mech. Ind. 16 (2015) 708 [Google Scholar]
  6. S.N. Grigoriev, S.V. Fedorov, Tool surface microalloying by self-extending high-temperature synthesis, Mater. Sci. Forum 834 (2015) 21–28 [CrossRef] [Google Scholar]
  7. S.N. Grigoriev, S.V. Fedorov, M.D. Pavlov, A.A. Okunkova, Y.M. Soe, Complex surface modification of carbide tool by NbHfTi alloying followed by hardfacing (TiAl)N, J. Frict. Wear 34 (2013) 14–18 [CrossRef] [Google Scholar]
  8. Z.-L. Li, D. Ye, Z. Li-Min, Accurate cutting force prediction of helical milling operations considering the cutter runout effect, Int. J. Adv. Manuf. Technol. 92 (2017) 1–12 [CrossRef] [Google Scholar]
  9. A.B. Markov, E.V. Yakovlev, V.I. Petrov, formation of surface alloys with a low-energy high-current electron-beam for improving high-voltage hold-off of copper electrodes, IEEE Trans. Plasma Sci. 41 (2013) 2177–2182 [CrossRef] [Google Scholar]
  10. L. Meisner, A. Markov, V.P. Rotshtein, et al., Microstructural characterization of Ti-Ta-based surface alloy fabricated on TiNi SMA by additive pulsed electron-beam melting of film/substrate system, J. Alloys Compd. 730 (2018) 376–385 [Google Scholar]
  11. S.V. Fedorov, G.V. Oganyan, Special features of electron-beam alloying of replaceable polyhedral hard-alloy plates under a complex surface treatment, Met. Sci. Heat Treat. 57 (2016) 620–624 [Google Scholar]
  12. S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, Met. Sci. Heat Treat. 54 (2012) 8–12 [CrossRef] [Google Scholar]
  13. K. Lukaszkowicz, E. Jonda, J. Sondor, K. Balin, J. Kubacki, Characteristics of the AlTiCrN + DLC coating deposited with a cathodic arc and the PACVD process, Mater. Technol. 50 (2016) 175–181 [Google Scholar]
  14. B. Karpuschewski, J. Kundrak, T. Emmer, D. Borysenko, A New Strategy in Face Milling - Inverse Cutting Technology, Solid State Phenom. 261 (2017) 331–338 [CrossRef] [Google Scholar]
  15. M. Rief, B. Karpuschewski, E. Kalhöfer, Evaluation and modeling of the energy demand during machining, CIRP J. Manuf. Sci. Technol. 19 (2017) 62–71 [CrossRef] [Google Scholar]
  16. A.A. Andreev, O.V. Sobol’, I.V. Serdyuk, et al., Synthesis of refractory carbide and nitride phases at the surface electron-beam alloying of tool materials, J. Frict. Wear 35 (2014) 497–500 [CrossRef] [Google Scholar]
  17. S.V. Fedorov, A.A. Okunkova, N.Yu. Peretyagin, P.Yu. Peretyagin, Electroconductive graphene-hydroxyapatite PVD targets for magnetron sputtering, Izvestia vyshih uchebnyh zavedeniy. Fizika 59 (2016) 192–194 [Google Scholar]
  18. M.M. Stebulyanin, A.A. Gurkina, A.A. Shein, N.Yu. Cherkasova, Measuring adhesive bond strength and microhardness of multilayer composite wear-resistant coating, Mech. Ind. 17 (2016) 712 [CrossRef] [EDP Sciences] [Google Scholar]
  19. T. Mulyana, E. Abd Rahim, S.N. Md Yahaya, The influence of cryogenic supercritical carbon dioxide cooling on tool wear during machining high thermal conductivity steel, J. Cleaner Prod. 164 (2017) 950–962 [CrossRef] [Google Scholar]
  20. A. Czana, M. Sajgalika, J. Holubjaka, et al., Identification of Temperatures in Cutting Zone when Dry Machining of Nickel Alloy Inconel 718, Procedia Manuf. 14 (2017) 66–75 [CrossRef] [Google Scholar]
  21. P. Ruitao, T. Heng, T. Xinzi, Z. Zhuan, FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy, MATEC Web of Conferences 80 (2016) 04001 [CrossRef] [EDP Sciences] [Google Scholar]
  22. Z. Pan, Y. Feng, S.Y. Liang, Material microstructure affected machining: a review, Manufacturing Rev. 4 (2017) 5 [CrossRef] [EDP Sciences] [Google Scholar]
  23. O.M. Oduola, O.O. Awopetu, C.A. Ikutegbe, K.J. Akinluwade, A.R. Adetunji, An Outlook on Tool Wear Mechanisms of Selected Cutting Tool Materials, Br. J. Appl. Sci. Technol. 14 (2016) 1–9 [CrossRef] [Google Scholar]
  24. X. Cui, B. Zhao, F. Jiao, P. Ming, Formation characteristics of the chip and damage equivalent stress of the cutting tool in high-speed intermittent cutting, Int. J. Adv. Manuf. Technol. 91 (2017) 2113–2123 [CrossRef] [Google Scholar]
  25. C. Dai, W. Ding, J. Xu, C. Ding, G. Huang, Investigation on size effect of grain wear behavior during grinding nickel-based superalloy Inconel 718, Int. J. Adv. Manuf. Technol. 91 (2017) 1–11 [Google Scholar]
  26. B. Kursuncu, H. Caliskan, S.Y. Guven, P. Panjan, Wear Behavior of Multilayer Nanocomposite TiAlSiN/TiSiN/TiAlN Coated Carbide Cutting Tool during Face Milling of Inconel 718 Superalloy, J. Nano Res. 47 (2017) 11–16 [CrossRef] [Google Scholar]
  27. N.H. Razak, M.M. Rahman, K. Kadirgama, Cutting force and chip formation in end milling operation when machining nickel-based superalloy, Hastelloy C-2000, J. Mech. Eng. Sci. 11 (2017) 2539–2551 [CrossRef] [Google Scholar]
  28. A. Suarez, et al., Effects of high-pressure cooling on the wear patterns on turning inserts used on alloy IN718, Mater. Manuf. Processes 32 (2017) 678–686 [CrossRef] [Google Scholar]
  29. I. Smurov, M. Doubenskaia, S. Grigoriev, A. Nazarov, Optical Monitoring in Laser Cladding of Ti6Al4V, J. Therm. Spray Technol. 21 (2012) 1357–1362 [Google Scholar]
  30. S.N. Grigor'ev, S.V. Fedorov, M.D. Pavlov, et al., Complex surface modification of carbide tool by Nb plus Hf plus Ti alloying followed by hardfacing (Ti plus Al)N, J. Frict. Wear 34 (2013) 14–18 [CrossRef] [Google Scholar]
  31. V.I. Medvedev, et al., Mathematical model and algorithm for contact stress analysis of gears with multi-pair contact, Mech. Mach. Theory 86 (2015) 156–171 [Google Scholar]
  32. S.V. Fedorov, M.D. Pavlov, A.A. Okunkova, Effect of structural and phase transformations in alloyed subsurface layer of hard-alloy tools on their wear resistance during cutting of high-temperature alloys, J. Frict. Wear 34 (2013) 190–198 [Google Scholar]
  33. A.A. Andreev, et al., Tribological characteristics of nanocomposite vacuum-plasma Ti-Hf, Ti-Hf-N, and Ti-Hf-Si-N coatings, J. Frict. Wear 34 (2013) 175–182 [CrossRef] [Google Scholar]
  34. V.V. Kuzin, S.N. Grigor’ev, M.A. Volosova, Thermal and Deformation Processes Occurring Within a Component Surface Layer Made from Oxide-Carbide Ceramic in Contact with a Nickel Alloy Component During Heating, Refract. Ind. Ceram 55 (2014) 157–163 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.