Issue
Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 709
Number of page(s) 6
DOI https://doi.org/10.1051/meca/2017055
Published online 30 December 2017
  1. R.L. Boxman, V.N. Zhitomirsky, Vacuum arc deposition devices, Rev. Sci. Instrum. 77 (2006) 021101, DOI: 10.1063/1.2169539 [CrossRef] [Google Scholar]
  2. S. Grigoriev, A. Metel, Plasma- and beam-assisted deposition methods, in: A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore (Eds.) Nanostructured thin films and nanodispersion strengthened coatings. Kluwer Academic Publishers, Boston, Dordrecht, London, 2004, pp. 147–154, DOI: 10.1007/1-4020-2222-0_14 [CrossRef] [Google Scholar]
  3. A.S. Metel, S.N. Grigoriev, Yu. A. Melnik, V.P. Bolbukov, Broad beam sources of fast molecules with segmented cold cathodes and emissive grids, Instrum. exp. tech. 55 (2012) 122–130, DOI: 10.1134/S0020441211060170 [CrossRef] [Google Scholar]
  4. I. Beilis, Y. Koulik, Y. Yankelevich, D. Arbilly, R. Boxman, Thin-film deposition with refractory materials using a vacuum arc, IEEE Trans. Plasma Sci. 43 (2015) 2323–2328, DOI: 10.1109/TPS.2015.2432577 [CrossRef] [Google Scholar]
  5. K. Tanaka, A. Anders, Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas, J. Vac. Sci. Technol. A 323 (2015) 061301, DOI: 10.1116/1.4926750 [CrossRef] [Google Scholar]
  6. S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, Metal Sci. Heat Treatment 54 (2012) 8–12, DOI: 10.1007/s11041-012-9447-x [CrossRef] [Google Scholar]
  7. R.L. Boxman, V.N. Zhitomirsky, B. Alterkop, E. Gidalevich, I. Beilis, M. Keidar, S. Goldsmith, Recent progress in filtered vacuum arc deposition, Surf. Coat. Technol. 86–87 (1996) 243–253, DOI: 10.1016/s0257-8972(96)03023-x [CrossRef] [Google Scholar]
  8. J. Musil, A. Rajský, A.J. Bell, J. Matouš, M. Čepera, J. Zeman, High-rate magnetron sputtering, J. Vac. Sci. Technol. A 14 (1996) 2187–2191, DOI: 10.1116/1.580045 [CrossRef] [Google Scholar]
  9. S.N. Grigoriev, Yu. A. Melnik, A.S. Metel, M.A. Volosova, Focused beams of fast neutral atoms in glow discharge plasma, J. Appl. Phys. 121 (2017) 223302, DOI: 10.1063/1.4985249 [CrossRef] [Google Scholar]
  10. A. Metel, M. Volosova, S. Grigoriev, Yu. Melnik, Products pre-treatment and beam-assisted deposition of magnetron sputtered coatings using a closed cylindrical grid inside a planetary rotation system, Surf. Coat. Technol. 325 (2017) 327–332, DOI: 10.1016/j.surfcoat.2017.06.071 [CrossRef] [Google Scholar]
  11. S. Veprek, H.-D. Mannling, P. Karvankova, J. Prochazka, The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥ 50 GPa, Surf. Coat. Technol. 200 (2006) 3876–3885, DOI: 10.1016/j.surfcoat.2004.11.023 [CrossRef] [Google Scholar]
  12. H.E. McKelvey, Magnetron cathode sputtering apparatus. US Patent No 4, 356, 073, 1982 [Google Scholar]
  13. J. Musil, J. Leština, J. Vlček, T. Tölg, Pulsed dc magnetron discharge for high-rate sputtering of thin films, J. Vac. Sci. Technol. A 19 (2001) 420–424, DOI: 10.1116/1.1339018 [CrossRef] [Google Scholar]
  14. A. Anders, Tutorial: Reactive high power impulse magnetron sputtering, J. Appl. Phys. 121 (2017) 171101, DOI: 10.1063/1.4978350 [CrossRef] [Google Scholar]
  15. R.P. Howson, H.A. Jafer, A.G. Spencer, Substrate effects from an unbalanced magnetron, Thin Solid Films 193/194 (1990) 127–137, DOI: 10.1016/s0040-6090(05)80020-3 [CrossRef] [Google Scholar]
  16. S. Kadlec, J. Musil, W.-D. Münz, G. Hakansson, J. Sundgren, Reactive deposition of TiN films using an unbalanced magnetron, Surf. Coat. Technol. 39/40 (1989) 487–497, DOI: 10.1016/S0257-8972(89)80010-6 [Google Scholar]
  17. W.-D. Münz, D. Schulze, F.J.M. Hauzer, A new method for hard coatings: ABS™ (arc bond sputtering), Surf. Coat. Technol. 50 (1992) 169–178, DOI: 10.1016/0257-8972(92)90058-I [CrossRef] [Google Scholar]
  18. S.N. Grigoriev, Yu.A. Melnik, A.S. Metel, V.V. Panin, V.V. Prudnikov, A compact vapor source of conductive target material sputtered by 3-keV ions at 0.05-Pa pressure, Instrum. Exp. Tech. 52 (2009) 731–737, DOI: 10.1134/S0020441209050170 [CrossRef] [Google Scholar]
  19. A. Metel, V. Bolbukov, M. Volosova, S. Grigoriev, Yu. Melnik, Source of metal atoms and fast gas molecules for coating deposition on complex shaped dielectric products, Surf. Coat. Technol. 225 (2013) 34–39, DOI: 10.1016/j.surfcoat.2013.03.013 [CrossRef] [Google Scholar]
  20. A.S. Metel, S.N. Grigoriev, M.A. Volosova, Yu.A. Melnik, Magnetron sputtering device with generation of pulsed beams of high-energy gas atoms, Instrum. Exp. Tech. 60 (2017) 290–296, DOI: 10.1134/S0020441217020117 [CrossRef] [Google Scholar]
  21. S.N. Grigoriev, A.S. Metel, M.A. Volosova, Yu.A. Melnik, Surface hardening by means of plasma immersion ion implantation and nitriding in glow discharge with electrostatic confinement of electrons, Mechanics & Industry 16 (2015) 711, DOI: 10.1051/meca/2015093 [Google Scholar]
  22. S.N. Grigoriev, A.S. Metel, M.A. Volosova, Yu.A. Melnik, Deposition of wear-resistant coatings using a combined source of metal atoms and fast gas molecules, Mech. Ind. 16 (2015) 705, DOI: 10.1051/meca/2015092 [CrossRef] [Google Scholar]
  23. R. Ramaseshan, F. Jose, S. Rajagopalan, S. Dash, Preferentially oriented electron beam deposited TiN thin films using focused jet of nitrogen gas, Surf. Eng. 32 (2016) 834–839, DOI: 10.1080/02670844.2016.1159832 [CrossRef] [Google Scholar]
  24. A.S. Metel, S.N. Grigoriev, Yu.A. Melnik, V.V. Panin, Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge, Plasma Phys. Rep. 35 (2009) 1058–1067 DOI: 10.1134/s1063780x09120095 [CrossRef] [Google Scholar]
  25. A.S. Metel, S.N. Grigoriev, M.A. Volosova, V.P. Bolbukov, Yu.A. Melnik, Role of electrostatic and magnetic electron confinement in a hollow-cathode glow discharge in a nonuniform magnetic field, Plasma Phys. Rep. 41 (2015) 188–197 DOI: 10.1134/S1063780X14120058 [CrossRef] [Google Scholar]
  26. A. Metel, V. Bolbukov, M. Volosova, S. Grigoriev, Yu. Melnik, Equipment for deposition of thin metallic films bombarded by fast argon atoms, Instrum. Exp. Tech. 57 (2014) 345–351, DOI: 10.1134/S0020441214020110 [CrossRef] [Google Scholar]
  27. I. Smurov, M. Doubenskaia, S. Grigoriev, A. Nazarov, Optical Monitoring in Laser Cladding of Ti6Al4V, J. Therm. Spray Technol. 21 (2012) 1357–1362 [CrossRef] [Google Scholar]
  28. A.S. Metel, Effect of ionization in the cathode layer on the characteristics of a Penning discharge. I. Hollow cathode discharge, Sov. Phys. Tech. Phys. 30 (1985) 1133–1136 [Google Scholar]
  29. I. Langmuir, The interaction of electron and positive ion space charges in cathode sheaths, Phys. Rev. 33 (1929) 954–989, DOI: 10.1103/PhysRev.33.954 [NASA ADS] [CrossRef] [Google Scholar]
  30. V.I. Kolobov, A.S. Metel, Glow discharges with electrostatic confinement of fast electrons, J. Phys. D: Appl. Phys. 48 (2015) 233001, DOI: 10.1088/0022-3727/48/23/233001 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.