Issue
Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 705
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2017052
Published online 30 December 2017
  1. S.I. Gonyalin, Russia in the world market of metalworking tools. Unified information portal “Exporters of Russia” 2015, http://www.rusexporter.ru/partner-materials/2639/ (in Russian) [Google Scholar]
  2. A.S. Vereschaka, Working capacity of the cutting tool with wear resistant coatings, Mashinostroenie, Moscow, 1993 (in Russian) [Google Scholar]
  3. K.D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M'Saoubi, Cutting with coated tools: coating technologies, characterization methods and performance optimization, CIRP Ann. − Manuf. Technol. 61 (2012) 703–723 [Google Scholar]
  4. G.S. Fox-Rabinovich, J.L. Endrino, B.D. Beake, A.I. Kovalev, S.C. Veldhuis, L. Ning, F. Fotaine, A. Gray, Impact of annealing on microstructure, properties and cutting performance of an AlTiN coating, Surf. Coat. Technol. 201 (2006) 3524–29 [Google Scholar]
  5. G.S. Fox-Rabinovich, G.C. Weatherley, A.I. Dodonov, A.I. Kovalev, L.S. Shuster, et al., Nano-crystalline filtered arc deposited (FAD) TiAlN PVD coatings for high-speed machining applications, Surf. Coat. Technol. 177–178 (2004) 800–811 [CrossRef] [Google Scholar]
  6. G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, G.K. Dosbaeva, Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions, Surf. Coat. Technol. 200 (2005) 1804–13 [CrossRef] [Google Scholar]
  7. G.S. Fox-Rabinovich, B.D. Beake, S.C. Veldhuis, J.L. Endrino, R. Parkinson, L.S. Shuster, M.S. Migranov, Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings, Surf. Coat. Technol. 200 (2006) 5738–5742 [CrossRef] [Google Scholar]
  8. B.D. Beake, S.R. Goodes, J.F. Smith, G.S. Fox-Rabinovich, S.C. Veldhuis, Using nanomechanics to optimise coatings for cutting tools, in: S. Zhang (Ed.), Handbook of Nanostructured Thin Films and Coatings, CRC Press 2010, pp. 205–244 [CrossRef] [Google Scholar]
  9. B.D. Beake, J.F. Smith, A. Gray, G.S. Fox-Rabinovich, S.C. Veldhuis, J.L. Endrino, Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500 °C and the fracture resistance and lifetime of cutting tools with Ti1−xAlxN (x = 0.5 and 0.67) PVD coatings in milling operations, Surf. Coat. Technol. 201 (2007) 4585–4593 [CrossRef] [Google Scholar]
  10. A. Hörling, L. Hultman, M. Odén, J. Sjölén, L. Karlsson, Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools, Surf. Coat. Technol. 191 (2005) 384–392 [CrossRef] [Google Scholar]
  11. G. Erkens, R. Cremer, T. Hamoudi, K.-D. Bouzakis, et al., Properties and performance of high aluminum containing (Ti, Al)N based supernitride coatings in innovative cutting applications, Surf. Coat. Technol. 177–178 (2004) 727–734 [CrossRef] [Google Scholar]
  12. G.S. Fox-Rabinovich, B.D. Beake, K. Yamamoto, M.H. Aguirre, S.C. Veldhuis, G. Dosbaeva, A. Elfizy, A. Biksa, L.S. Shuster, A.Y. Rashkovskiy, Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys, Surf. Coat. Technol. 204 (2010) 3698–3706 [CrossRef] [Google Scholar]
  13. G.S. Fox-Rabinovich, S.C. Veldhuis, G.K. Dosbaeva, K. Yamamoto, A.I. Kovalev, D.L. Wainstein, I.S. Gershman, L.S. Shuster, B.D. Beake, Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior, J. Appl. Phys. 103 (2008) 083510, DOI:10.1063/1.2904907 [CrossRef] [Google Scholar]
  14. G.S. Fox-Rabinovich, K. Yamamoto, B.D. Beake, A.I. Kovalev, M.H. Aguirre, S.C. Veldhuis, G. Dosbaeva, D.L. Wainstein, A. Biksa, A.Y. Rashkovskiy, Emergent behavior of nano-multilayered coatings during dry high-speed machining of hardened tool steels, Surf. Coat. Technol. 204 (2010) 3425, DOI:10.1016/j.surfcoat.2010.04.002 [CrossRef] [Google Scholar]
  15. B.D. Beake, G.S. Fox-Rabinovich, Y. Losset, K. Yamamoto, M.H. Aguirre, S.C. Veldhuis, J.L. Endrino, A.I. Kovalev, Why can TiAlCrSiYN-based adaptive coatings deliver exceptional performance under extreme frictional conditions? Faraday Discuss. 156 (2012) 1–11 [CrossRef] [Google Scholar]
  16. G.S. Fox-Rabinovich, J.L. Endrino, M.H. Aguirre, B.D. Beake, S.C. Veldhuis, et al., Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions, J. Appl. Phys. 111 (2012) 064306 [CrossRef] [Google Scholar]
  17. A.A. Vereschaka, M.A. Volosova, S.N. Grigoriev, A.S. Vereschaka, Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition, Procedia CIRP 9 (2013) 8–12, DOI:10.1016/j.procir.2013.06.159 [CrossRef] [Google Scholar]
  18. A. Vereschaka, M.A. Volosova, A.D. Batako, A.S. Vereshchaka, B.Y. Mokritskii, Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition, Int. J. Adv. Manuf. Technol. 84 (2016) 1471–1482, DOI:10.1007/s00170-015-7808-5 [Google Scholar]
  19. A.A. Vereschaka, A.S. Vereschaka, A.D. Batako, O.K. Hojaev, B.Y. Mokritskii, Development and research of nanostructured multilayer composite coatings for tungsten-free carbides with extended area of technological applications, Int. J. Adv. Manuf. Technol. 87 (2016) 3449–3457, DOI:10.1007/s00170-016-8739-5 [CrossRef] [Google Scholar]
  20. A.A. Vereshchaka, A.S. Vereshchaka, O. Mgaloblishvili, M.N. Morgan, A.D. Batako, Nano-scale multilayered-composite coatings for the cutting tools, Int. J. Adv. Manuf. Technol. 72 (2014) 303–317, DOI:10.1007/s00170-014-5673-2 [CrossRef] [Google Scholar]
  21. A.S. Vereschaka, A.A. Vereschaka, D.V. Sladkov, A.Yu. Aksenenko, N.N. Sitnikov. Control of structure and properties of nanostructured multilayer composite coatings applied to cutting tools as a way to improve efficiency of technological cutting operation. J. Nano Res. 37 (2016) 51–57, DOI:10.4028/www.scientific.net/JNanoR.37.51 [CrossRef] [Google Scholar]
  22. C.Y. Wang, Y.X. Xie, Z. Qin, H.S. Lin, Y.H. Yuan, Q.M. Wang, Wear and breakage of TiAlN-and TiSiN-coated carbide tools during high-speed milling of hardened steel, Wear 336–337 (2015) 29–42 [CrossRef] [Google Scholar]
  23. S. Dolinšek, B. Šuštaršič, J. Kopač, Wear mechanisms of cutting tools in high-speed cutting processes, Wear 250 (2001) 349–356 [CrossRef] [Google Scholar]
  24. N. Yuan, M. Rahman, Y.S. Wong, Investigation of chip formation in high speed end milling, J. Mater. Process. Technol. 113 (2001) 360–367 [CrossRef] [Google Scholar]
  25. Z.Q. Liu, X. Ai, H. Zhang, Z.T. Wang, Y. Wan, Wear patterns and mechanism of cutting tools in high-speed face milling, J. Mater. Process. Technol. 129 (2002) 222–226 [Google Scholar]
  26. M. Soković, J. Kopač, L.A. Dobrzański, M. Adamiak, Wear of PVD-coated solid carbide end mills in dry high-speed cutting, J. Mater. Process. Technol. 157–158 (2004) 422–426 [Google Scholar]
  27. A.A. Vereschaka, B.Y. Mokritskii, D.A. Pustovalov, A.S. Vereschaka, J.I. Bublikov, M.G. Oganyan, Improving the efficiency of carbide end mills by deposition of nano-scale multi-layered composition coatings, Appl. Mech. Mater. 684 (2014) 264–270, DOI:10.4028/www.scientific.net/AMM.684.264 [Google Scholar]
  28. S. Wojciechowski, P. Twardowski, Tool life and process dynamics in high speed ball end milling of hardened steel, Procedia CIRP 1 (2012) 289–294 [CrossRef] [Google Scholar]
  29. A.A. Vereschaka, S.N. Grigoriev, Study of cracking mechanisms in multilayer composite nano-structured coatings, Wear 378–379 (2017) 43–57, DOI:10.1016/j.wear.2017.01.101 [Google Scholar]
  30. H. Cao, K. Zhou, X. Chen, Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators, Int. J. Mach. Tools Manuf. 92 (2015) 52–59 [Google Scholar]
  31. H. Zhang, Z. Deng, Y. Fu, L. Lv, C. Yan, A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions, J. Clean. Prod. 148 (2017) 174–184 [CrossRef] [Google Scholar]
  32. W. Huang, X. Li, B. Wang, J. Chen, J. Zhou, An analytical index relating cutting force to axial depth of cut for cylindrical end mills, Int. J. Mach. Tools Manuf. 111 (2016) 63–67 [CrossRef] [Google Scholar]
  33. W. Zhao, S. Wang, Z. Han, N. He, Cutting performance evaluation of end mills for titanium aircraft components, Procedia CIRP 35 (2015) 1–7 [CrossRef] [Google Scholar]
  34. W. Baohai, C. Di, H. Xiaodong, Z. Dinghua, T. Kai, Cutting tool temperature prediction method using analytical model for end milling, Chin. J. Aeronaut. 29 (2016) 1788–1794 [Google Scholar]
  35. A.A. Vereschaka, S.N. Grigoriev, N.N. Sitnikov, A.D. Batako, Delamination and longitudinal cracking in multi-layered composite nano-structured coatings and their influence on cutting tool life, Wear 390–391 (2017) 209–219 [CrossRef] [Google Scholar]
  36. A.A. Vereschaka, Development of assisted filtered cathodic vacuum arc deposition of nano-dispersed multilayer composite coatings on cutting tools, Key Eng. Mater. 581 (2014) 62–67, DOI:10.4028/www.scientific.net/KEM.581.62 [CrossRef] [Google Scholar]
  37. Alexey A. Vereschaka, Anatoly S. Vereschaka, Jury I. Bublikov, Anatoliy Y. Aksenenko, Nikolay N. Sitnikov. Study of properties of nanostructured multilayer composite coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N, J. Nano Res. 40 (2016) 90–98, DOI:10.4028/www.scientific.net/JNanoR.40.90 [CrossRef] [Google Scholar]
  38. A.O. Volkhonskii, A.A. Vereshchaka, I.V. Blinkov, A.S. Vereshchaka, A.D. Batako, Filtered cathodic vacuum arc deposition of nano-layered composite coatings for machining hard-to-cut materials, Int. J. Adv. Manuf. Technol. 84 (2016) 1647–1660, DOI:10.1007/s00170-015-7821-8 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.