Issue
Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 713
Number of page(s) 5
DOI https://doi.org/10.1051/meca/2017058
Published online 30 December 2017
  1. P.J. De Groot, Principles of interference microscopy for the measurement of surface topography, Adv. Opt. Photonics 7 (2015) 1–65 [CrossRef] [Google Scholar]
  2. F. Kaiser, P. Vergyris, et al., Quantum white-light interferometry for high-accuracy optical parameter determination, Quantum Inf. Meas. (QIM) QT6A.11 (2017) [Google Scholar]
  3. F. Liu, Y. Wu, F. Wu, Phase shifting interferometry from two normalized interferograms with random tilt phase-shift, Opt. Express 23 (2015) 19932–19946 [CrossRef] [PubMed] [Google Scholar]
  4. L. Huang, X. Lu, Y. Zhou, et al., Dual-wavelength interferometry based on the spatial carrier-frequency phase-shifting method, Appl. Opt. 55 (2016) 2363–2369 [CrossRef] [PubMed] [Google Scholar]
  5. T.A. Ramirez-delreal, M. Mora-Gonzalez, F.J. Casillas-Rodriguez, et al., Steps length error detector algorithm in phase-shifting interferometry using Radon transform as a profile measurement, Opt. Express 25 (2017) 7150–7160 [CrossRef] [PubMed] [Google Scholar]
  6. S. Mahajan, V. Trivedi, P. Vora, et al., Highly stable digital holographic microscope using Sagnac interferometer, Opt. Lett. 40 (2015) 3743–3746 [CrossRef] [PubMed] [Google Scholar]
  7. G. Nehmetallah, Multi-wavelength digital holographic microscopy using a telecentric reflection configuration, Digit. Hologr. 3D Imaging Meet. DM3A.7 (2015) [Google Scholar]
  8. P.S. Ignatiev, A.V. Loparev, K.V. Indukaev, P.A. Osipov, Investigating the optical properties of nanostructures by modulation interference microscopy, J. Opt. Technol. 78 (2011) 19–24 [CrossRef] [Google Scholar]
  9. A.V. Loparev, E.V. Romash, A.B. Zenzinov, et al., Laser-based modulation-interference microscopy of optical surfaces, J. Opt. Technol. 79 (2012) 366–370 [CrossRef] [Google Scholar]
  10. V.P. Tychinsky, Coherent phase microscopy in cell biology: visualization of metabolic states, Biochim. Biophys. Acta 1708 (2005) 362–366 [CrossRef] [PubMed] [Google Scholar]
  11. W. Kaplonek, C. Lukianowicz, Coherence correlation interferometry in surface topography measurements, in: I. Padron (Ed.), Recent Interferometry Applications in Topography and Astronomy, InTech, Chapters published, 2012 [Google Scholar]
  12. A. Arias, M.G. Shlyagin, S.V. Miridonov, et al., Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light, Opt. Express 23 (2015) 30347–30356 [CrossRef] [PubMed] [Google Scholar]
  13. H. Lu, J. Chung, X. Ou, C. Yang, Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast, Opt. Express 24 (2016) 25345–25361 [CrossRef] [PubMed] [Google Scholar]
  14. Z. Wang, D. Marks, S. Carney, M. Mir, G. Popescu, Tomographic reconstruction by quantitative phase imaging with broadband fields, Opt. Life Sci. NTuB2 (2011) [Google Scholar]
  15. N.I. Chkhalo, S.A. Churin, A.E. Pestov, et al., Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics, Opt. Express 22 (2014) 20094–20106 [CrossRef] [PubMed] [Google Scholar]
  16. Y.A. Melnik, T.V. Tarasova, G.O. Gvozdeva, S. Nowotny, High precision surface protection of Al-based alloy parts using laser micro cladding, Mechanics & Industry 17 (2016) 710 [CrossRef] [EDP Sciences] [Google Scholar]
  17. C. Li, Y. Yang, H. Chai, et al., Dark-field detection method of shallow scratches on the super-smooth optical surface based on the technology of adaptive smoothing and morphological differencing, Chin. Opt. Lett. 15 (2017) 081202 [CrossRef] [Google Scholar]
  18. L. Zhang, J. Wang, J. Zhang, Super-smooth surface fabrication technique and experimental research, Appl. Opt. 51 (2012) 6612–6617 [CrossRef] [PubMed] [Google Scholar]
  19. J. Lim, A. Wahab, G. Park, et al., Beyond Born-Rytov limit for super-resolution optical diffraction tomography, Opt. Express 25 (2017) 30445–30458 [CrossRef] [PubMed] [Google Scholar]
  20. H. Yang, H. Cheng, Y. Feng, Improvement of high-power laser performance for super-smooth optical surfaces using electrorheological finishing technology, Appl. Opt. 56 (2017) 9822–9829 [CrossRef] [PubMed] [Google Scholar]
  21. N.I. Chkhalo, S.A. Churin, A.E. Pestov, et al., Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics, Opt. Express 22 (2014) 20094–20106 [CrossRef] [PubMed] [Google Scholar]
  22. R. Horstmeyer, J. Chung, O. Xiaoze, G. Zheng, Diffraction tomography with Fourier ptychography, Optica 3 (2016) 827–835 [CrossRef] [PubMed] [Google Scholar]
  23. V.I. Teleshevskii, A.V. Shulepov, E.M. Rozdina, Smart computer microscopy for measurement of linear and angular dimensions of work pieces, Meas. Tech. 54 (2011) 853–858 [CrossRef] [Google Scholar]
  24. I. Smurov, M. Doubenskaia, S. Grigoriev, A. Nazarov, Optical monitoring in laser cladding of Ti6Al4V, J. Therm. Spray Technol. 21 (2012) 1357–1362 [CrossRef] [Google Scholar]
  25. I.S. Gershman, E.I. Gershman, P.Y. Peretyagin, Composite nanomaterials based on copper to replace silver in electrical contacts, Mechanics & Industry 17 (2016) 708 [CrossRef] [EDP Sciences] [Google Scholar]
  26. B. Bhaduri, C. Edwards, H. Pham, et al., Diffraction phase microscopy: principles and applications in materials and life sciences, Adv. Opt. Photon. 6 (2014) 57–119 [CrossRef] [Google Scholar]
  27. Q. Vo, F. Fang, X. Zhang, H. Gao, Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms, Appl. Opt. 56 (2017) 8174–8185 [CrossRef] [PubMed] [Google Scholar]
  28. S. Hurst, The characteristic function of the student-t distribution, Financial mathematics, Centre for Mathematics and its applications, School of Mathematical Sciences, ANU, Canberra, Australia, 1995 [Google Scholar]
  29. T. Doi, T. Kurosawa, T. Hatsuzawa, Estimation of numerical aperture effect on the basis of measured pupil function of Mirau-type Objective, Front. Opt. OFMC4 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.