Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 602
Number of page(s) 9
DOI https://doi.org/10.1051/meca/2019017
Published online 13 August 2019
  1. M. Kciuk, R. Turczyn, Properties and application of magnetorheological fluids, J. Achiev. Mater. Manuf. Eng. 18 , 127–130 (2006) [Google Scholar]
  2. M. Ashtiani, S. Hashemabadi, A. Ghaffari, A review on the magnetorheological fluid preparation and stabilization, J. Magn. Magn. Mater. 374 , 716–730 (2015) [Google Scholar]
  3. J. de Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review, Soft Matter 7 , 3701–3710 (2011) [Google Scholar]
  4. F. Gao, Y.-N. Liu, W.-H. Liao, Optimal design of a magnetorheological damper used in smart prosthetic knees, Smart Mater. Struct. 26 , 035034 (2017) [Google Scholar]
  5. C. Sarkar et al., Experimental studies on magnetorheological brake containing plane, holed and slotted discs, Ind. Lubr. Tribol. 69 , 116–122 (2017) [CrossRef] [Google Scholar]
  6. J. Viau et al., Tendon-driven manipulator actuated by magnetorheological clutches exhibiting both high-power and soft motion capabilities, IEEE/ASME Trans. Mechatron. 22 , 561–571 (2017) [CrossRef] [Google Scholar]
  7. G. Hu, M. Liao, W. Li, Analysis of a compact annular-radial-orifice flow magnetorheological valve and evaluation of its performance, J. Intell. Mater. Syst. Struct. 28 , 1322–1333 (2017) [Google Scholar]
  8. M. Chen et al., Design and fabrication of a novel magnetorheological finishing process for small concave surfaces using small ball-end permanent-magnet polishing head, Int. J. Adv. Manuf. Technol. 83 , 823–834 (2016) [Google Scholar]
  9. D. Severin, S. Dörsch, Friction mechanism in industrial brakes, Wear 249 , 771–779 (2001) [Google Scholar]
  10. V.R. Bommadevara, A new electro-magnetic brake for actuator locking mechanism in aerospace vehicle, in 2017 IEEE International Magnetics Conference (INTERMAG), 2017, pp. 1–1 [Google Scholar]
  11. D. Khachane, A. Shrivastav, Antilock braking system and its advancement, 2016 [Google Scholar]
  12. R.L. Mott, Machine elements in mechanical design. Prentice Hall, NJ, 1999 [Google Scholar]
  13. K. Lijesh, D. Kumar, H. Hirani, Effect of disc hardness on MR brake performance, Eng. Fail. Anal. 74 , 228–238 (2017) [Google Scholar]
  14. D. Senkal, H. Gurocak, Haptic joystick with hybrid actuator using air muscles and spherical MR-brake, Mechatronics 21 , 951–960 (2011) [CrossRef] [Google Scholar]
  15. J. Blake, H.B. Gurocak, Haptic glove with MR brakes for virtual reality, IEEE/ASME Trans. Mechatron. 14 , 606–615 (2009) [CrossRef] [Google Scholar]
  16. S.R. Patil, K.P. Powar, S.M. Sawant, Thermal analysis of magnetorheological brake for automotive application, Appl. Therm. Eng. 98 , 238–245 (2016) [Google Scholar]
  17. J.-H. Lee et al., Tension control of wire rope in winch spooler using magneto rheological brake, Int. J. Precis. Eng. Manuf. 17 , 157–162 (2016) [CrossRef] [Google Scholar]
  18. J.J. Lima, R.T. Rocha, F.C. Janzen, A.M. Tusset, D.G. Bassinello, J.M. Balthazar, Position control of a manipulator robotic arm considering flexible joints driven by a DC motor and a controlled torque by a MR-brake, in ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, November 11–17, 2016 [Google Scholar]
  19. C. Sarkar, H. Hirani, Conceptual Design of Magnetorheological Brake using TK Solver, Int. J. Curr. Eng. Technol. 5 , 990–993 (2015) [Google Scholar]
  20. E.J. Park, L.F. da Luz, A. Suleman, Multidisciplinary design optimization of an automotive magnetorheological brake design, Comput. Struct. 86 , 207–216 (2008) [Google Scholar]
  21. B. Assadsangabi et al., Optimization and design of disk-type MR brakes, Int. J. Automot. Technol. 12 , 921–932 (2011) [CrossRef] [Google Scholar]
  22. W. Zhou, C.-M. Chew, G.-S. Hong, Development of a compact double-disk magneto-rheological fluid brake, Robotica 25 , 493–500 (2007) [Google Scholar]
  23. D. Wang, Y. Hou, Z. Tian, A novel high-torque magnetorheological brake with a water cooling method for heat dissipation, Smart Mater. Struct. 22 , 025019 (2013) [Google Scholar]
  24. N. Wang et al., Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake, Smart Mater. Struct. 25 , 105026 (2016) [Google Scholar]
  25. R.S. Lydia et al. Design and development of coil casing MRF brake system, in: MATEC Web of Conferences, EDP Sciences, Paris, 2017 [Google Scholar]
  26. A. Younis et al., Application of SEUMRE global optimization algorithm in automotive magnetorheological brake design, Struct. Multidiscipl. Optim. 44 , 761–772 (2011) [Google Scholar]
  27. B.K. Kumbhar, S.R. Patil, S.M. Sawant, Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application, Eng. Sci. Technol. Int. J. 18 , 432–438 (2015) [CrossRef] [Google Scholar]
  28. K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics 18 , 434–447 (2008) [CrossRef] [Google Scholar]
  29. Q. Nguyen, V. Lang, S. Choi, Optimal design and selection of magneto-rheological brake types based on braking torque and mass, Smart Mater. Struct. 24 , 067001 (2015) [Google Scholar]
  30. M. Hajiyan et al., A new design of magnetorheological fluid based braking system using genetic algorithm optimization, Int. J. Mech. Mater. Des. 12 , 449–462 (2016) [CrossRef] [Google Scholar]
  31. H. Shamieh, R. Sedaghati, Design optimization of a magneto-rheological fluid brake for vehicle applications, in: ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, NY, 2016 [Google Scholar]
  32. G. Marannano, G. Virz Mariotti, Č. Duboka, Preliminary design of a magnetorheological brake for automotive use, in Science and motor vehicles, international automotive conference 2011, pp. 1–20 [Google Scholar]
  33. J. Wu et al., Design and modelling of a novel multilayered cylindrical magnetorheological brake, Int. J. Appl. Electromagn. Mech. 53 , 29–50 (2017) [CrossRef] [Google Scholar]
  34. W. Li, H. Du, Design and experimental evaluation of a magnetorheological brake, Int. J. Adv. Manuf. Technol. 21 , 508–515 (2003) [Google Scholar]
  35. Q. Nguyen, S. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat, Smart Mater. Struct. 19 , 115024 (2010) [Google Scholar]
  36. K.Y. Lee et al., Heuristic optimization techniques, in: Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence: HVDC, FACTS, and Artificial Intelligence, Wiley, NJ, 2016, pp. 931–984 [CrossRef] [Google Scholar]
  37. K.Y. Lee, M.A. El-Sharkawi, Modern heuristic optimization techniques: theory and applications to power systems, Vol. 39, John Wiley & Sons, NJ, 2008 [CrossRef] [Google Scholar]
  38. M.K. Sarakhsi, S.F. Ghomi, B. Karimi, A new hybrid algorithm of scatter search and Nelder-Mead algorithms to optimize joint economic lot sizing problem, J. Comput. Appl. Math. 292 , 387–401 (2016) [Google Scholar]
  39. K. Klein, J. Neira, Nelder-mead simplex optimization routine for large-scale problems: a distributed memory implementation, Comput. Econ. 43 , 447–461 (2014) [CrossRef] [Google Scholar]
  40. R. Kamali, M.K.D. Manshadi, A. Mansoorifar, Numerical analysis of non Newtonian fluid flow in a low voltage cascade electroosmotic micropump, Microsyst. Technol. 22 , 2901–2907 (2016) [Google Scholar]
  41. R. Kamali, A. Mansoorifar, M.D. Manshadi, Effect of baffle geometry on mixing performance in the passive micromixers, Iran. J. Sci. Technol. Trans. Mech. Eng. 38 , 351 (2014) [Google Scholar]
  42. R. Kamali, M.K.D. Manshadi, Numerical simulation of the leaky dielectric microdroplet generation in electric fields, Int. J. Mod. Phys. C 27 , 1650012 (2016) [Google Scholar]
  43. M.K. Dehghan, Manshadi et al., Electroosmotic micropump for lab‐on‐a‐chip biomedical applications, Int. J. Numer. Model. Electron. Netw. Devices Fields 29 , 845 –858 (2016) [CrossRef] [Google Scholar]
  44. M.K.D. Manshadi et al., Numerical analysis of non-uniform electric field effects on induced charge electrokinetics flow with application in micromixers, J. Micromech. Microeng. 29 , 035016 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.