Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 603
Number of page(s) 8
DOI https://doi.org/10.1051/meca/2019026
Published online 22 August 2019
  1. A. Chrysochoos, Infrared thermography, a potential tool for analyzing the material behaviour, Mcanique & Industries 3, 3–14 (2002) [CrossRef] [Google Scholar]
  2. A. Germaneau, J.C. Dupré, Thermal exchanges and thermomechanical couplings in amorphous polymers, Polym. Polym. Compos. 16, 9–17 (2008) [Google Scholar]
  3. A. Benaarbia, A. Chrysochoos, G. Robert, Thermomechanical analysis of the onset of strain concentration zones in wet polyamide 6.6 subjected to cyclic loading, Mech. Mater. 99, 9–25 (2016) [CrossRef] [Google Scholar]
  4. T. Telejko, Z. Malinowski, Application of an inverse solution to the thermal conductivity identification using the finite element method, J. Mater. Process. Technol. 146, 145–155 (2004) [CrossRef] [Google Scholar]
  5. C. Balaji, S.P. Venkateshan, A. Ambirajan, V.Ramakrishnan, Simultaneous estimation of principal thermal conductivities of an anisotropic composite medium, an inverse analysis, J. Heat Transfer 135, 021301 (2014) [Google Scholar]
  6. X. Wei, W. Chen, B. Chen, L. Suna, Singular boundary method for heat conduction problems with certain spatially varying conductivity, J. Comput. Math. Appl. 69, 206–222 (2015) [CrossRef] [Google Scholar]
  7. Ma.H. Zeng, J. Realff, M.L. Kumar, S.D.A. Schiraldi, Processing, structure, and properties of fibers from polyester/carbon nanofiber composites, Compos. Sci. Technol. 63, 1617–1628 (2003) [CrossRef] [Google Scholar]
  8. D. Hull, T.W. Clyne, An introduction to composite materials, Cambridge University Press, Cambridge, 1996 [CrossRef] [Google Scholar]
  9. M.M. Mejias, H.R.B. Orlande, M.N. Ozisik, A comparison of different parameter estimation technique for the identification of thermal conductivity components of orthotropic solids, in: 3rd International Conference on Inverse Problems in Engineering, Theory and Practice, Port Ludlow, WA, USA, 1999 [Google Scholar]
  10. V. Plana, P. Reulet, P. Millan, Experimental characterization of the thermophysical properties of composite materials by an inverse heat conduction method, J. Compos. Mater. 40, 1247–1258 (2006) [CrossRef] [Google Scholar]
  11. R.D. Sweeting, X.L. Liu, Measurement of thermal conductivity for fibre-reinforced composites, Composites A 35, 933–938 (2004) [CrossRef] [Google Scholar]
  12. L. Czajkowski, W. Olek, J. Weres, R. Guzenda, Thermal properties of wood-based panels: thermal conductivity identification with inverse modelling, Eur. J. Wood Wood Prod. 74, 577–584 (2016) [CrossRef] [Google Scholar]
  13. B.W. Sawaf, M.N. Ozisik, Determining the constant thermal conductivities of orthotropic materials, Int. Commun. Heat Mass Transfer 22, 201–211 (1995) [CrossRef] [Google Scholar]
  14. B.W. Sawaf, M.N. Ozisik, Y. Jarny, An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of an orthotropic medium, Int. J. Heat Mass Transfer 38, 3005–3010 (1995) [CrossRef] [Google Scholar]
  15. R. Taktak, J.V. Beck, E.P. Scott, Optimal experimental design for estimating thermal properties of composite materials, Int. J. Heat Mass Transfer 36, 2977–2986 (1993) [CrossRef] [Google Scholar]
  16. S.P. Andersson, R.G. Ross, Thermal conductivity and heat capacity per unit volume of poly(methyl methacrylate) under high pressure, Int. J. Thermophys. 15 949–946 (1994) [CrossRef] [Google Scholar]
  17. G. de Carvalho, A.J.S. Neto, An inverse analysis for polymers thermal properties estimation, in: 3rd International Conference on Inverse Problems in Engineering, Port Ludlow, 1999 [Google Scholar]
  18. K. Atchonouglo, M. Banna, C. Vallée, J.-C. Dupré, Inverse transient heat conduction problems and identification of thermal parameters, Heat Mass Transfer 45, 23–29 (2008) [CrossRef] [Google Scholar]
  19. J.-M. Bergheau, R. Fortunier, Simulation numérique des transferts thermiques par éléments finis, Lavoisier, 2004 [Google Scholar]
  20. R.W. Lewis, K. Morgan, H.R. Thomas, K.N. Seetharamu, The finite element mdethods in heat transfer analysis, John Wiley, New York, 1996 [Google Scholar]
  21. E. Polak, G. Ribiere, Note sur la convergence de Méthodes de directions conjuguées, Rev. Franç. Informat. Rech. Opérationnelle 16, 35–43 (1969) [Google Scholar]
  22. O. Hua-jiang, Criteria for the finite element algorithm of generalized heat conduction equation, Appl. Math. Mech. 13, 587–596 (1992) [CrossRef] [Google Scholar]
  23. O.M. Alifanov, Inverse heat transfer problems, Springer-Verlag, Berlin, 1994 [CrossRef] [Google Scholar]
  24. M.N. Ozisik, H.R.B. Orlande, Inverse heat transfer: fundamentals and applications, Taylor & Francis, Pennsylvania, 1999 [Google Scholar]
  25. S.H. Carslaw, J.C. Jaeger, Conduction of heat in solids, 2nd edn., Oxford University Press, Oxford, 1959, p. 112 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.