Open Access
Issue
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 604
Number of page(s) 14
DOI https://doi.org/10.1051/meca/2019029
Published online 20 August 2019
  1. A. Anjiridezfuli, Exergetic analysis of aircraft turbo engine, MSc thesis, Islamic Azad University, Dezful Branch, 2009 [Google Scholar]
  2. S.M. Nabavi, Gas turbine and jet engine: theoretical and application, Tehran University, 1983 [Google Scholar]
  3. O. Balli, H. Aras, N. Aras, A. Hepbasli, Exergetic and exergoeconomic analysis of an aircraft jet engine (AJE), Int. J. Exergy 5 , 567–581 (2008) [CrossRef] [Google Scholar]
  4. H. Karakoc, E. Turgut, A. Hepbasli, Exergetic analysis of an aircraft turbofan engine, Proceeding: Summer Course on Exergy and Its Applications, Anadolu University, Eskisehir, 2006 [Google Scholar]
  5. J. Etele, M.A. Rosen, Sensitivity of exergy efficiencies of aerospace engine to reference environment selection, Exergy Int. J. 1 , 91–99 (2001) [CrossRef] [Google Scholar]
  6. A. Bejan, D.L. Siems, The need for exergy analysis and thermodynamic optimization in aircraft development, Exergy Int. J. 1 , 14–24 (2001) [CrossRef] [Google Scholar]
  7. S. Pasini, U. Ghezzi, R. Andriani, L.D.A. Ferri, Exergetic analysis of a turbojet engine in off design conditions, 37th Intersociety Energy Conversion Engineering Conference, Washington, USA, 29–31 July 2002, IEEE [Google Scholar]
  8. D.M. Paulus, R.A. Gaggioli, Some observations of entropy extrema in fluid flow, Energy 2487–2500 (2004) [CrossRef] [Google Scholar]
  9. E.T. Turgut, T. Karakoc, A. Hepbasli, Exergetic analysis of an aircraft turbofan engine, Int. J. Energy Res. 31, 1383–1397 (2004) [CrossRef] [Google Scholar]
  10. C. Tona, P. Antonio Raviolo, L. FelipePellegrini, J.S. Oliveira, Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight, Energy 35 , 952–959 (2009) [CrossRef] [Google Scholar]
  11. O. Turan, Effect of reference altitudes for a turbofan engine with the aid of specific-exergy based method, Int. J. Exergy 11 , 252–270 (2012) [Google Scholar]
  12. M A. Ehyaei, M.A. Angiridezfuli Rosen, Exergetic analysis of an aircraft turbojet engine with after burner, Therm. Sci. 17 , 1181–1194 (2013) [CrossRef] [Google Scholar]
  13. O. Balli, A. Hepbasli, Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine, Energy 64 , 582–600 (2013) [CrossRef] [Google Scholar]
  14. H.Z. Hassan, Evaluation of the local exergy destruction in the intake and fan of a turbofan engine, Energy 63 , 245–251 (2013) [CrossRef] [Google Scholar]
  15. H. Aydin, O. Turan, T.H. Karakoc, A. Midilli, Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight, Energy 58 , 550–560 (2013) [Google Scholar]
  16. H. Aydin, O. Turan, A. Midilli, T.H. Karakoc, Energetic and exergetic performance assessment of a turboprop engine at various loads, Int. J. Exergy 13 , 543–564 (2013) [CrossRef] [Google Scholar]
  17. H. Aydin, O. Turan, T. Karakoc, H.A. Midilli, Sustainability assessment of PW6000 turbofan engine: an exergetic approach, Int. J. Exergy 14 , 388–412 (2014) [Google Scholar]
  18. V.C. Tai, C. Phen, C. Mares, Optimization of energy and exergy of turbofan engines using genetic algorithms, Int. J. Sustain. Aviat. 1 , 25–42 (2014) [CrossRef] [Google Scholar]
  19. O. Turan, H. Aydin, T.H. Karakoc, A. Midilli, Some exergetic measures of a JT8D turbofan engine, J. Autom. Control Eng. 2 , 110–114 (2014) [CrossRef] [Google Scholar]
  20. H. Aydin, O. Turan, A. Midilli, T.H. Karakoc, Exergetic performance of a low bypass turbofan engine at takeoff condition, Prog. Exergy Energy Environ. 3 , 293–303 (2014) [Google Scholar]
  21. H. Aydin, O. Turan, T.H. Karakoc, A. Midilli, Exergetic sustainability indicators as a tool in commercial aircraft, Int. J. Green Energy 12 , 28–40 (2015) [Google Scholar]
  22. N. Kaya, O. Turan, A. Midilli, T.H. Karakoc, Exergetic sustainability improvement potentials of a hydrogen fuelled turbofan engine UAV by heating its fuel with exhaust gasses, Int. J. Hydrogen Energy 41 , 8307–8322 (2015) [CrossRef] [Google Scholar]
  23. O. Turan, An exergy way to quantify sustainability metrics for a high bypass turbofan engine, Energy 86 , 722–736 (2015) [Google Scholar]
  24. Y. Şöhret, A. Emin, A. Hepbasli, T.H. Karakoc, Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts, Energy 90 , 1219–1228 (2015) [CrossRef] [Google Scholar]
  25. Y. Şöhret, A. Dinç, T.H. Karakoc, Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission, Energy 93 , 716–729 (2015) [CrossRef] [Google Scholar]
  26. O. Turan, Energy and exergy (ENEX) analyses of a MD-80 aircraft, IJMERR 5 , 206–209 (2016) [Google Scholar]
  27. T. Baklacioglu, H. Aydin, O. Turan, Energetic and exergetic efficiency modeling of a cargo aircraft by a topology improving neuro-evolution algorithm, Energy 103 , 630–645 (2016) [CrossRef] [Google Scholar]
  28. O. Balli, Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous, Therm. Eng. 111 , 152–169 (2016) [CrossRef] [Google Scholar]
  29. Y. Cem Tahsin, Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method, Energy 111 , 251–259 (2016) [CrossRef] [Google Scholar]
  30. M.A. Ehyaei, M.H. Saidi, A. Abbassi, Optimization of a combined heat and power PEFC by exergy analysis, J. Power Sources 143 , 179–184 (2005) [CrossRef] [Google Scholar]
  31. M.H. Saidi, A. Abbassi, M.A. Ehyaei, Exergetic optimization of a PEM fuel cell for domestic hot water heater, ASME J. Fuel Cell Technol. 2 , 284–289 (2005) [CrossRef] [Google Scholar]
  32. A. Mozafari, A. Ahmadi, M.A. Ehyaei, Exergy, economic and environmental optimization of micro gas turbine, Int. J. Exergy 7 , 289–310 (2010) [CrossRef] [Google Scholar]
  33. M.A. Ehyaei, A. Mozafari, Energy, economic and environmental (3E) analysis of a micro gas turbine employed for on-site combined heat and power production, Energy Build. 42 , 259–264 (2010) [CrossRef] [Google Scholar]
  34. M.A. Ehyaei, Sh. Hakimzadeh, P. Ahmadi, Exergy, economic and environmental analysis of absorption chiller inlet air cooler used in gas turbine power plants, Int. J. Energy Res. 43 , 131–141 (2011) [Google Scholar]
  35. M.A. Ehyaei, A. Mozafari, M.H. Alibiglou, Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant, Energy 36 , 6851–6861 (2011) [Google Scholar]
  36. G.R. Ashari, M.A. Ehyaei, A. Mozafari, F. Atabi, E. Hajidavalloo, S. Shalbaf, Exergy, economic and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings, ASME J. Fuel Cell Technol. 9 , 211–222 (2012) [Google Scholar]
  37. A. Mozafari, M.A. Ehyaei, The effects of regeneration on micro gas turbine system optimization, Int. J. Green Energy 9 , 51–70 (2012) [CrossRef] [Google Scholar]
  38. B. Ahrar-yazdi, B. Ahrar-Yazdi, M.A. Ehyaei, A. Ahmadi, Optimization of micro combined heat and power gas turbine by genetic algorithm, J. Therm. Sci. 19 , 207–218 (2015) [CrossRef] [Google Scholar]
  39. M.A. Ehyaei, A. Ahmadi, M. Esfandiar, Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm, Appl. Therm. Eng. 76 , 449–461 (2015) [CrossRef] [Google Scholar]
  40. K. Darvish, M.A. Ehyaei, F. Atabi, M.A. Rosen, Selection of optimum working fluid for organic Rankine cycles by exergy and exergy-economic analyses, Sustainability 7 , 15362–15383 (2015) [CrossRef] [Google Scholar]
  41. M. Shamoushaki, F. Ghanatir, M.A. Ehyaei, A. Ahmadi, Exergy and exergoeconomic analysis and multi-objective optimisation of gas turbine power plant by evolutionary algorithms. Case study: Aliabad Katoul power plant, Int. T. Exergy 22 , 279–306 (2017) [CrossRef] [Google Scholar]
  42. M. Shamoushaki, M.A. Ehyaei, Exergy, economic and environmental (3E) analysis of a gas turbine power plant and optimization by MOPSO algorithm, Therm. Sci. (2017). DOI http://thermalscience.vinca.rs/online-first/2398 [Google Scholar]
  43. M. Shamoushaki, M.A. Ehyaei, F. Ghanatir, Exergy, economic and environmental analysis and multi-objective optimization of a SOFC, GT power plant, Energy J. 134 , 515–531 (2017) [CrossRef] [Google Scholar]
  44. E. Ghasemian, M.A. Ehyaei, Evaluation and optimization of organic Rankine cycle (ORC) with algorithms NSGA-II, MOPSO, and MOEA for eight coolant fluids, Int. J. Energy Environ. Eng. 9 , 39–57 (2017) [CrossRef] [Google Scholar]
  45. Technical Order of Aircraft 1F-5E/F, 1998 [Google Scholar]
  46. I. Sochet, P. Gillard, Flammability of kerosene in civil and military aviation. J. Loss Prevent. Process Ind. 15 , 335–345 (2002) [CrossRef] [Google Scholar]
  47. P. Dagaut, M. Cathonnet, The ignition, oxidation and combustion of kerosene: a review of experimental and kinetic modeling, Prog. Energy Combust. Sci. 32 , 48–92 (2006) [CrossRef] [Google Scholar]
  48. T.J. Kotas, The exergy method of thermal plant analysis, reprint edn., Malabar, FL, Krieger, 1998 [Google Scholar]
  49. M.J. Ebadi, M. Goriji-Bandpy, Exergetic analysis of gas turbine plants, Int. J. Exergy 2 , 285–290 (2005) [CrossRef] [Google Scholar]
  50. A. Bejan, Entropy generation through heat and flow, John Wiley & Sons, Inc., New York, 1982 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.