Open Access
Mechanics & Industry
Volume 20, Number 6, 2019
Article Number 621
Number of page(s) 10
Published online 29 November 2019
  1. E.S. Palma, E.S. dos Santos, Fatigue damage analysis in an automobile stabilizer bar, Proc. Inst. Mech. Eng. D 216, 865–871 (2002) [CrossRef] [Google Scholar]
  2. S. Zhang, A. Chen, A practical design process to optimize fatigue performance for chassis components, SAE Technical Paper 2009-01-1227, 2009 [Google Scholar]
  3. A.S. Sener, Determination of vehicle components fatigue life based on FEA method and experimental analysis, Int. J. Electr. Mech. Mechatr. Eng. 2, 133–145 (2011) [Google Scholar]
  4. C.K. Clarke, G.E. Borowski, Evaluation of a leaf spring failure, J. Fail. Anal. Prevent. 5, 54–63 (2005) [CrossRef] [Google Scholar]
  5. C. Iyidiker, I. Cokal, A. Yilmaz, N. Kilic, Fatigue life prediction of a bus body structure using CAE tools, FISITA 2010 World Automotive Congress, Italy, 319–329, 2010 [Google Scholar]
  6. Y.S. Kong, S. Abdullah, D. Schramm, M.Z. Omar, S.M. Haris, T. Bruckmann, Mission profiling of road data measurement for coil spring fatigue life, Measurement 107, 99–110 (2017) [CrossRef] [Google Scholar]
  7. T.E. Putra, Husaini, Investigating the road surface effect to the fatigue life of an automotive coil spring, Mater. Sci. Eng. 352, 012016 (2018) [Google Scholar]
  8. M. Buciumeanu, A.S. Miranda, A.C.M. Pinho, F.S. Silva, Design improvement of an automotive-formed suspension component subjected to fretting fatigue, Eng. Fail. Anal. 14, 810–821 (2017) [Google Scholar]
  9. Z.M. Zhang, C. Sun, R. Bridgelall, M. Sun, Application of machine learning method to evaluate road roughness from connected vehicles, J. Transp. Eng. B 144, 04018043 (2018) [CrossRef] [Google Scholar]
  10. M.A. Aly, A.O. Nassef, K. Hamza, Multi-objective design of vehicle suspension systems via a local diffusion genetic algorithm for disjoint pareto frontiers, Eng. Optim. 47, 706–717 (2015) [CrossRef] [Google Scholar]
  11. K.R. Kashyzadeh, M.J. Ostad-Ahmad-Ghorabi, A. Arghavan, Fatigue life prediction of package of suspension automotive under random vibration based on road roughness, Mediter. J. Model. Simul. 4, 37–50 (2015) [Google Scholar]
  12. A. Saoudi, M. Bouazara, D. Marceau, Study of the fatigue life and weight optimization of an automobile aluminium alloy part under random road excitation, Shock Vib. 17, 107–121 (2010) [CrossRef] [Google Scholar]
  13. M. Kamal, M. Mustafizur Rahman, M.S.M. Sani, Application of multibody simulation for fatigue life estimation, Int. J. Autom. Mech. Eng. 7, 912–923 (2013) [CrossRef] [Google Scholar]
  14. M.C. Levesley, S.A. Kember, D.C. Barton, P.C. Brooks, O.M. Querin, Dynamic simulation of vehicle suspension systems for durability analysis, Mater. Sci. Forum 440–441, 103–110 (2003) [CrossRef] [Google Scholar]
  15. B. Li, H. Yuan, T. Zhao, G. Wang, Research on dynamic characteristics and fatigue robust optimization of integrated vehicle model, Proc. Inst. Mech. Eng. D 1–18 (2018) [Google Scholar]
  16. S.J. Heo, D.O. Kang, J.H. Lee, I.H. Kim, S.M.H. Darwish, Shape optimization of lower control arm considering multi-disciplinary constraint condition by using progress meta-model method, Int. J. Autom. Technol. 14, 499–505 (2013) [CrossRef] [Google Scholar]
  17. J. Fang, Y. Gao, G. Sun, C. Xu, Q. Li, Multiobjective robust design optimization of fatigue life for a truck cab, Reliab. Eng. Syst. Saf. 135, 1–8 (2015) [CrossRef] [Google Scholar]
  18. X.G. Song, J.H. Jung, H.J. Son, J.H. Park, K.H. Lee, Y.C. Park, Metamodel-based optimization of a control arm considering strength and durability performance, Comput. Math. Appl. 60, 976–980 (2010) [Google Scholar]
  19. J.K. Kim, Y.J. Kim, W.H. Yang, Y.C. Park, K.H. Lee, Structural design of an outer tie rod for a passenger car, Int. J. Autom. Technol. 12, 375 (2011) [CrossRef] [Google Scholar]
  20. T.H. Lee, J.J. Jung, Metamodel-based shape optimization of connecting rod considering fatigue life, Key Eng. Mater. 306–308, 211–216 (2006) [Google Scholar]
  21. C. Schäfer, E. Finke, Shape optimization by design of experiments and finite element methods − an application of steel wheels, Struct. Multidiscipl. Optim. 36, 477–491 (2008) [Google Scholar]
  22. A.C. Mitra, T. Soni, G.R. Kiranchand, Optimization of automotive suspension by design of experiments: a nonderivative method, Adv. Acoust. Vib. 2016, 3259026 (2016) [Google Scholar]
  23. A.F. Neto, A.F.B. Costa, M.F. Lima, Use of factorial designs and the response surface methodology to optimize a heat staking process, Exp. Tech. 42, 319 (2018) [Google Scholar]
  24. D.C. Montgomery, Design and analysis of experiments, John Wiley & Sons, U.S.A, 2009 [Google Scholar]
  25. P.Y. Mhaske, P.A. Narwade, M.P. Nagarkar, Stiffness analysis of passenger car tire using nitrogen, Int. J. Sci. Res. Publ. 6, 140–148 (2016) [Google Scholar]
  26. T.E. Putra, S. Abdullah, D. Schramm, M.Z. Nuawi, T. Bruckmann, Generating strain signals under consideration of road surface profile, Mech. Syst. Signal Proces. 60–61, 485–497 (2015) [CrossRef] [Google Scholar]
  27. A.D. Balmos, A.D. Layton, A. Aaron, J.V. Krogmeier, D.R. Buckmaster, Toward understanding the errors in online air-ride suspension-based weight estimation, 2014 ASABE and CSBE/SCG AB Annual International Meeting, Canada, 141897468, 2014 [Google Scholar]
  28. B. He, S. Wang, F. Gao, Failure analysis of an automobile damper spring tower, Eng. Fail. Anal. 17, 498–505 (2010) [Google Scholar]
  29. A. Ince, G. Glinka, A modification of Morrow and Smith-Watson-Topper stress correction models, Fatig. Fract. Eng. Mater. Struct. 34, 854–867 (2011) [CrossRef] [Google Scholar]
  30. B. Lacroix, P. Seers, Z. Liu, A passive nonlinear damping design for a road race car application, SAE technical paper series 2006-01-1984, 2006 [Google Scholar]
  31. F.B. Grosselle, G. Timelli, F. Bonollo, Doe applied to microstructural and mechanical properties of Al-Si-Cu-Mg casting alloys for automotive application, Mater. Sci. Eng. A 527, 3536–3545 (2010) [CrossRef] [Google Scholar]
  32. B. Breytenbach, P.S. Els, Optimal vehicle suspension characteristics for increased structural fatigue life, J. Terramech. 48, 397–408 (2011) [CrossRef] [Google Scholar]
  33. M. Kamal, M.M. Rahman, Study on dynamic behaviour of Wishbone suspension system, Mater. Sci. Eng. 36, 012019 (2012) [Google Scholar]
  34. J. Gerretzen, E. Szymanska, J.J. Jansen, J. Bart, H.J. van Manen, E.R. van de Heuvel, L.M.C. Buydens, Simple and effective way for data processing selection based on design of experiments, Anal. Chem. 87, 12096–12103 (2015) [CrossRef] [PubMed] [Google Scholar]
  35. M.K. Assadi, S.M. Zahraee, J. Taghdisi, Integration of computer simulation, design of experiments and particle swarm optimisation to optimise the production line efficiency, Int. J. Swarm Intell. Evol. Comput. 5, 1000136 (2016) [Google Scholar]
  36. P. Sivák, E. Ostertagová, Evaluation of fatigue tests by means of mathematical statistics, Proc. Eng. 48, 636–642 (2012) [CrossRef] [Google Scholar]
  37. N.A. Wahir, M.E. Nor, M.S. Rusiman, K. Gopal, Treatment of outliers via interpolation method with neural network forecast performances, J. Phys. 995, 012025 (2018) [Google Scholar]
  38. C. Leys, O. Klein, Y. Dominicy, C. Ley, Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance, J. Exp. Soc. Psychol. 74, 150–156 (2018) [Google Scholar]
  39. P. Li, J. Lam, K.C. Cheung, Control of vehicle suspension using an adaptive inerter, Proc. Inst. Mech. Eng. D 229, 1934–1943 (2015) [CrossRef] [Google Scholar]
  40. L. Del Llano-Vizcaya, C. Rubio-González, G. Mesmacque, T. Cervantes-Hernández, Multiaxial fatigue and failure analysis of helical compression springs, Eng. Fail. Anal. 13, 1303–1313 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.