Free Access
Mechanics & Industry
Volume 21, Number 3, 2020
Article Number 304
Number of page(s) 17
Published online 07 April 2020
  1. M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988) [Google Scholar]
  2. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69, 635–654 (1999) [CrossRef] [Google Scholar]
  3. M. Zhou, G. Rozvany, The COC algorithm, Part II: topological, geometrical and generalized shape optimization, Comp. Methods Appl. Mech. Eng. 89, 309–336 (1991) [CrossRef] [Google Scholar]
  4. Y.M. Xie, G.P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885–896 (1993) [Google Scholar]
  5. G. Allaire, F. Jouve, A.M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194, 363–393 (2004) [Google Scholar]
  6. M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003) [Google Scholar]
  7. E. Andreassen, A. Clausen, M. Schevenels, B.S. Lazarov, O. Sigmund, Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim. 43, 1–16 (2010) [CrossRef] [Google Scholar]
  8. O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidiscipl. Optim. 21, 120–127 (2001) [Google Scholar]
  9. A. Bhattacharyya, C. Conlan-Smith, K.A. James, Topology optimization of a bi-stable airfoil using nonlinear elasticity. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2017) [Google Scholar]
  10. G. Capasso, R. Amargier, S. Coniglio, J. Morlier, C. Mabru, M. Di Sciuva, Structural optimization for propulsion aiframe, M.Sc. thesis, Politecnico di Torino, 2019 [Google Scholar]
  11. G. Capasso, S. Coniglio, M. Charlotte, J. Morlier, Optimisation topologique de structures adaptatives (bi-stables) en mécanique non-linéaire, in 14éme Colloque National en Calcul des Structures (2019) [Google Scholar]
  12. S. Coniglio, C. Gogu, R. Amargier, J. Morlier, Pylon and engine mounts performance driven structural topology optimization, in World Congress of Structural and Multidisciplinary Optimisation. Springer (2017), pp. 1349–1363 [Google Scholar]
  13. J.H. Zhu, W.H. Zhang, L. Xia, Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng. 23, 595–622 (2016) [Google Scholar]
  14. P. Bettini, A. Airoldi, G. Sala, L.D. Landro, M. Ruzzene, A. Spadoni, Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process. Compos. Part B: Eng. 41, 133–147 (2010) [CrossRef] [Google Scholar]
  15. P.R. Budarapu, Y.B. Sudhir Sastry, R. Natarajan, Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures, Front. Struct. Civil Eng. 10, 394–408 (2016) [CrossRef] [Google Scholar]
  16. K.C.W.Cheung, Digital cellular solids : reconfigurable composite materials. PhD thesis, Massachusetts Institute of Technology (2012) [Google Scholar]
  17. A. Airoldi, M. Crespi, G. Quaranti, G. Sala, Design of a morphing airfoil with composite chiral structure, J. Aircraft 49, 1008–1019 (2012) [CrossRef] [Google Scholar]
  18. S. Joshi, Z. Tidwell, W. Crossley, S. Ramakrishnan, Comparison of morphing wing stategies based upon aircraftperformance impacts, in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics Materials Conference. American Institute of Aeronautics and Astronautics (2004) [Google Scholar]
  19. J.M. Martinez, D. Scopelliti, C. Bil, R. Carrese, P. Marzocca, Cestino, G. Frulla, Design, analysis and experimental testing of a morphing wing, in 25th AIAA/AHS Adaptive Structures Conference. American Institute of Aeronautics and Astronautics (2017) [Google Scholar]
  20. D. Wagg, I.P.W. Bond, M. Friswell, Adaptive structures – engineering applications (2007) [CrossRef] [Google Scholar]
  21. T. Buhl, C. Pedersen, O. Sigmund, Stiffness design of geometrically nonlinear structures using topology optimization, Struct. Multidiscip. Optim. 19, 93–104 (2000) [CrossRef] [Google Scholar]
  22. H.C. Gea, J. Luo, Topology optimization of structures with geometrical nonlinearities, Comput. Struct. 79, 1977–1985 (2001) [Google Scholar]
  23. S.M. Han, S.I. Kim, Y.Y. Kim, Topology optimization of planar linkage mechanisms for path generation without prescribed timing, Struct. Multidiscipl. Optim. 56, 501–517 (2017) [Google Scholar]
  24. C.B.W. Pedersen, T. Buhl, O. Sigmund, Topology synthesis of large-displacement compliant mechanisms, Int. J. Numer. Methods Eng. 50, 2683–2705 (2001) [Google Scholar]
  25. M.P. Bendsøe, J.M. Guedes, S. Plaxton, J.E. Taylor, Optimization of structure & material properties for solids composed of softening material, in IUTAM Symposium on Optimization of Mechanical Systems. Springer, Netherlands (1996), pp. 17–24 [CrossRef] [Google Scholar]
  26. M. Bogomolny, O. Amir, Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling, Int. J. Numer. Methods En. 90, 1578–1597 (2012) [CrossRef] [Google Scholar]
  27. K. Maute, S. Schwarz, E. Ramm, Adaptive topology optimization of elastoplastic structures, Struct. Optim. 15, 81–91 (1998) [CrossRef] [Google Scholar]
  28. G.H. Yoon, Y.Y. Kim, Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization, Int. J. Numer. Methods Eng. 69, 2196–2218 (2007) [Google Scholar]
  29. K. Yuge, N. Iwai, N. Kikuchi, Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method, Struct. Optim. 17, 286–299 (1999) [CrossRef] [Google Scholar]
  30. K. Yuge, N. Kikuchi, Optimization of a frame structure subjected to a plastic deformation, Struct. Optim. 10, 197–208 (1995) [CrossRef] [Google Scholar]
  31. X. Huang, Y. Xie, Topology optimization of nonlinear structures under displacement loading, Eng. Struct. 30, 2057–2068 (2008) [Google Scholar]
  32. X. Huang, Y.M. Xie, G. Lu, Topology optimization of energy-absorbing structures, Int. J. Crashworthiness 12, 663–675 (2007) [CrossRef] [Google Scholar]
  33. D. Jung, H.C. Gea, Topology optimization of nonlinear structures, Finite Elem. Anal. Des. 40, 1417–1427 (2004) [Google Scholar]
  34. M.J. Werkheiser, J. Dunn, M.P. Snyder, J. Edmunson, K. Cooper, M.M. Johnston, 3d printing in zero-g ISS technology demonstration, in AIAA SPACE 2014 Conference and Exposition. American Institute of Aeronautics and Astronautics (2014) [Google Scholar]
  35. C. Conlan-Smith, A. Bhattacharyya, K.A. James, Optimal design of compliant mechanisms using functionally graded materials, Struct. Multidiscipl. Optim. 57, 197–212 (2017) [Google Scholar]
  36. R. Yang, C. Chen, Stress-based topology optimization, Struct. Optim. 12, 98–105 (1996) [CrossRef] [Google Scholar]
  37. G. Da Silva, E. Cardoso, Stress-based topology optimization of continuum structures under uncertainties, Comp. Methods Appl. Mech. Eng. 313, 647–672 (2017) [CrossRef] [Google Scholar]
  38. C. Kiyono, S. Vatanabe, E. Silva, J. Reddy, A new multi-p-norm formulation approach for stress-based topology optimization design. Comp. Struct. 156, 10–19 (2016) [CrossRef] [Google Scholar]
  39. S.J. Moon, G.H. Yoon, A newly developed QP-relaxation method for element connectivity parameterization to achieve stress-based topology optimization for geometrically nonlinear structures, Comp. Methods Appl. Mech. Eng. 265, 226–241 (2013) [CrossRef] [Google Scholar]
  40. A. Verbart, M. Langelaar, F. van Keulen, A unified aggregation and relaxation approach for stress-constrained topology optimization, Struct. Multidiscipl. Optim. 55, 663–679 (2016) [Google Scholar]
  41. C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology optimization for continua, Struct. Multidiscipl. Optim. 41, 605–620 (2010) [Google Scholar]
  42. M. Bruggi, P. Duysinx, Topology optimization for minimum weight with compliance and stress constraints. Struct. Multidiscipl. Optim. 46, 369–384 (2012) [Google Scholar]
  43. N.H. Kim, Introduction to Nonlinear Finite Element Analysis. Springer US (2014) [Google Scholar]
  44. S. Coniglio, J. Morlier, C. Gogu, R. Amargier, Generalized geometry projection: a unified approach for geometric feature based topology optimization, Arch. Comput. Methods Eng. 1–38 (2019) [Google Scholar]
  45. W. Zhang, W. Yang, J. Zhou, D. Li, X. Guo, Structural topology optimization through explicit boundary evolution, J. Appl. Mech. 84, 011011 (2016) [Google Scholar]
  46. W. Zhang, J. Yuan, J. Zhang, X. Guo, A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model, Struct. Multidiscipl. Optim. 53, 1243–1260 (2015) [Google Scholar]
  47. G.I. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Struct. Multidiscip. Optim. 21, 90–108 (2001) [CrossRef] [Google Scholar]
  48. G.I. Rozvany, M. Zhou, T. Birker, Generalized shape optimization without homogenization, Struct. Optim. 4, 250–252 (1992) [CrossRef] [Google Scholar]
  49. M. Zhou, G. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comp. Methods Appl. Mech. Eng. 89, 309–336 (1991) [CrossRef] [Google Scholar]
  50. T. Bruns, A reevaluation of the simp method with filtering and an alternative formulation for solid–void topology optimization, Struct. Multidiscip. Optim. 30, 428–436 (2005) [CrossRef] [Google Scholar]
  51. O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim. 16, 68–75 (1998) [CrossRef] [Google Scholar]
  52. K. Svanberg, The method of moving asymptotes—a new method for structural optimization, Int. J. Numer. Methods Eng. 24, 359–373 (1987) [Google Scholar]
  53. R.W. Ogden, Non-Linear Elastic Deformations. Courier Corporation (2013) [Google Scholar]
  54. P.Y. Papalambros, D.J. Wilde, Principles of Optimal Design. Cambridge University Press (2000) [CrossRef] [Google Scholar]
  55. P. Duysinx, M.P. Bendsøe, Topology optimization of continuum structures with local stress constraints, Int. J. Numer.Methods Eng. 43, 1453–1478 (1998) [CrossRef] [MathSciNet] [Google Scholar]
  56. T. Bruns, D. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190, 3443–3459 (2001) [Google Scholar]
  57. G. Kreisselmeier, R. Steinhauser, Systematic control design by optimizing a vector performance index, in Computer aided design of control systems. Elsevier (1980), pp. 113–117 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.