Free Access
Issue
Mechanics & Industry
Volume 21, Number 3, 2020
Article Number 303
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2020013
Published online 06 April 2020
  1. B. Tutkun, F.O. Edis, A GPU application for high-order compact finite difference scheme, Comput. Fluids 55, 29–35 (2012) [Google Scholar]
  2. V. Esfahanian, H. Mahmoodi Darian, S.M.I. Gohari, Assessment of WENO schemes for numerical simulation of some hyperbolic equations using GPU, Comput. Fluids 80, 260–268 (2013) [Google Scholar]
  3. H. Mahmoodi Darian, V. Esfahanian, Assessment of WENO schemes for multi-dimensional Euler equations using GPU, Int. J. Numer. Meth. Fl. 76, 961–981 (2014) [CrossRef] [Google Scholar]
  4. Y. Zhang, J. Cohen, J.D. Owens, Fast tridiagonal solvers on the GPU, in Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Bangalore , January 9–14 (2010) 127–136 [Google Scholar]
  5. D. Egloff, High performance finite difference PDE solvers on GPUs, Technical report, QuantAlea GmbH, February, 2010 [Google Scholar]
  6. D. Göddeke, R. Strzodka, Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision multigrid, IEEE Trans. Parallel Distrib. Syst. 22, 22–32 (2011) [Google Scholar]
  7. A. Davidson, Y. Zhang, J.D. Owens, An auto-tuned method for solving large tridiagonal systems on the GPU, Proceedings of the 25th IEEE Intern. Parallel and Distributed Processing Symposium, Anchorage, Alaska, 16–20 May (2011) 956–965 [Google Scholar]
  8. H.S. Kim, S. Wu, W.L. Chang, W.M.W. Hwu, A scalable tridiagonal solver for GPUs, in Inter. Conf. on Parallel Processing, Taipei City (September 2011) 444–453 [Google Scholar]
  9. P. Quesada-Barriuso, J. Lamas-Rodríguez, D.B. Heras, M. Bóo, F. Argüello, Selecting the best tridiagonal system solver projected on Multi-Core CPU and GPU platforms, in 17th International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA, 18–19 July, 2011 [Google Scholar]
  10. V. Esfahanian, B. Baghapour, M. Torabzadeh, H. Chizari, An efficient GPU implementation of cyclic reduction solver for high-order compressible viscous flow simulations, Comput. Fluids 92, 160–171 (2014) [Google Scholar]
  11. M. Giles, E. Laszlo, I. Reguly, J. Appleyard, J. Demouth, GPU implementation of finite difference solvers, in Seventh Workshop on High Performance Computational Finance, New Orleans, LA, USA , 16–17 November, 2014 [Google Scholar]
  12. H.J. Macintosh, D.J. Warne, N.A. Kelson, J.E. Banks, T.W. Farrell, Implementation of parallel tridiagonal solvers for a heterogeneous computing environment, ANZIAM J. 56, 446–462 (2016) [CrossRef] [Google Scholar]
  13. K. Karimi, N.G. Dickson, F. Hamze, A performance comparison of CUDA and OpenCL, The Computing Research Repository, https://arxiv.org/abs/1005.2581 [Google Scholar]
  14. J. Fang, A.L. Varbanescu, H. Sips, A comprehensive performance comparison of CUDA and OpenCL, International Conference on Parallel Processing (ICPP), Taipei, Taiwan, 13–16 September, 2011 [Google Scholar]
  15. NVIDIA CUDA Home Page: https://developer.nvidia.com/cuda-zone [Google Scholar]
  16. L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess programs, IEEE Trans. Comput. C28, 690–691 (1979) [Google Scholar]
  17. G. Vasiliadis, S. Antonatos, M. Polychronakis, E.P. Markatos, S. Ioannidis, Gnort: high performance network intrusion detection using graphics processors, in Proceedings of the 11th International Symposium on Recent Advances in Intrusion Detection (RAID), Cambridge, MA, USA , September 15–17, 2008 [Google Scholar]
  18. U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48, 387–411 (1982) [Google Scholar]
  19. D.H. Yoon, K.S. Yang, C.B. Choi, Flow past a square cylinder with an angle of incidence, Phys. Fluids 22, 043603 (2010) [CrossRef] [Google Scholar]
  20. A.E. Perry, M.S. Chong, T.T. Lim, The vortex-shedding process behind two-dimensional bluff bodies, J. Fluid Mech. 116, 77–90 (1982) [Google Scholar]
  21. M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate computations of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume, Int. J. Heat Fluid Fl. 21, 186–196 (2000) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.