Open Access
Mechanics & Industry
Volume 21, Number 3, 2020
Article Number 306
Number of page(s) 12
Published online 03 April 2020
  1. J. Hartvigsen, S. Elangovan, A. Khandkar, Modeling, design, and performance of solid oxide fuel cells, Proc. Sci. Technol. Zirconia 682–693 (1993) [Google Scholar]
  2. S. Murthy, A.G. Fedorov, Radiation Heat Transfer Analysis of the Monolith-Type Solid Oxide Fuel Cell, J. Power Sources 124, 453–458 (2003) [Google Scholar]
  3. D.L. Damm, A.G. Fedorov, Spectral radiative heat transfer analysis of the planar SOFC, J. Fuel Cell Sci. Technol, 2, 258–262 (2005) [Google Scholar]
  4. D.L. Damm, A.G. Fedorov, Radiation heat transfer in SOFC materials and components, J. Power Sources 143, 158–165 (2005) [Google Scholar]
  5. K.J. Daun, S.B. Beale, F. Liu, Radiation heat transfer in planar SOFC electrolytes, J. Power Sources 157, 302–310 (2006) [Google Scholar]
  6. B. Grzegorz, J.S. Szmyd. Numerical modelling of radiative heat transfer in an internal indirect reforming-type SOFC, J. Power Sources 181, 8–16 (2008) [Google Scholar]
  7. R.J. Kee, B.L. Kee, J.L. Martin, Radiative and convective heat transport within tubular solid-oxide fuel-cell stacks, J. Power Sources 195, 6688–6698 (2010) [Google Scholar]
  8. C. Bao, N. Cai, E. Croiset, An analytical model of view factors for radiation heat transfer in planar and tubular solid oxide fuel cells, J. Power Sources 196, 3223–3232 (2011) [Google Scholar]
  9. I. Mejri, A. Mahmoudi, M.A. Abbassi, A. Omri, Radiation Heat Transfer Effect in Solid Oxide Fuel Cell: Application of the Lattice Boltzmann Method, International Journal of Mathematical, Computational, Physical, Electrical Comp. Eng. 8 (2014) [Google Scholar]
  10. M. Garcia-Camprubi, H. Jasak, N. Fueyo, “CFD analysis of cooling effects in H2-fed solid oxide fuel cells” J. Power Sources 196, 7290–7301 (2011) [Google Scholar]
  11. D. Ferrero, A. Lanzini, M. Santarelli, Solid Oxide Fuel Cells Modeling, Advances in medium and high temperature solid oxid fuel cell technology, CISM Int. Centre Mech. Sci. 574, 291–342 (2017) [CrossRef] [Google Scholar]
  12. I. Tikiz, Huseyin Pehlivan, CFD modelling and experimental validation of cell performance in a 3-D planar SOFC, Int. J. Hydrogen 44, 15441–15455 (2019) [CrossRef] [Google Scholar]
  13. L. van Biert, M. Godjevaca, K. Visser, P.V. Aravind, Dynamic modelling of a direct internal reforming solid oxide fuel cell stackbased on single cell experiments, Appl. Energy 250, 976–990 (2019) [Google Scholar]
  14. S. Yixiang, C. Ningsheng, L. Chen, Numerical modelling of an anode-supported SOFC button cell considering anodic surface diffusion, J Power Sources 164, 639–48 (2007) [Google Scholar]
  15. M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric study of solid oxide fuel cell performance, Energy Convers. Manag. 48, 1525–1535 (2007) [Google Scholar]
  16. P. Aguiara, C.S. Adjiman, N.P. Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance, J. Power Sources 138, 120–136 (2004) [Google Scholar]
  17. M. Chnani, Modelisation Macroscopique de piles PEFC et SOFC pour l'étude de leur couplage, Thèse de doctorat. Institut FEMTO-ST- Département ENISYS UMR CNRS 6174–UFC – ENSMM – UTBM. (2008) [Google Scholar]
  18. F. Zhao, A.V. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, J. Power Sources 141, 79–95 (2005) [Google Scholar]
  19. CFD Fluent 6.2.16 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.