Open Access
Issue
Mechanics & Industry
Volume 22, 2021
Article Number 24
Number of page(s) 10
DOI https://doi.org/10.1051/meca/2021022
Published online 09 April 2021
  1. H. Zhang, X. Li, L. Jiang, D. Yang, A review of misalignment of aero-engine rotor system, Acta Aeronautica et Astronautica Sinica 40 , 42–53 (2019) [Google Scholar]
  2. Q. Han, M. Wang, G. Zhao, G. Feng, A review of rotor systems with misalignment, Journal of Dynamics and Control 14 , 1–13 (2016) [Google Scholar]
  3. M. Lal, R. Tiwari, Experimental estimation of misalignment effects in rotor-bearing-coupling systems, in: P. Pennacchi (Ed.), Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Springer, Cham 2015 [Google Scholar]
  4. J. Rybczynski, The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features, Mechanical Systems and Signal Processing 25 , 521–536 (2011) [Google Scholar]
  5. P. Pennacchi, A.J.S. Vania, Vibration, Diagnosis and model based identification of a coupling misalignment, Sock and Vibration 12 , 293–308 (2005) [Google Scholar]
  6. A.W. Lees, J.K. Sinha, M.I.J.M.S. Friswell, S. Processing, Model-based identification of rotating machines, Mechanical Systems & Signal Processing 23 , 1884–1893 (2009) [Google Scholar]
  7. N.H. Chandra, A.S. Sekhar, Fault detection in rotor bearing systems using time frequency techniques, Mechanical Systems and Signal Processing 72–73 , 105–133 (2016) [Google Scholar]
  8. Y. Xia, J. Pang, L. Yang, Q. Zhao, X.J.A.A. Yang, Study on vibration response and orbits of misaligned rigid rotors connected by hexangular flexible coupling, Applied Acoustics 155 , 286–296 (2019) [Google Scholar]
  9. H. Tejas, K. Patel, D.J.M. Ashish, Systems, S. Processing, Mechanical Systems & Signal Processing 23, 2236–2252 (2009) [Google Scholar]
  10. T.H. Patel, A.K. Darpe, Vibration response of misaligned rotors, Journal of Sound and Vibration 325, 609–628 (2009) [Google Scholar]
  11. K. Schuhmann, K. Kirch, A. Knecht, M. Marszalek, F. Nez, J. Nuber, R. Pohl, I. Schulthess, L. Sinkunaite, M. Zeyen, A. Antognini, Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms, Applied Optics 58 , 2904–2912 (2019) [PubMed] [Google Scholar]
  12. G. Szymanski, L. Wawrzyniuk, Effect of nonconstant mirror misalignment of moving mirror in Fourier transform spectrometer, Optical Engineering 54 , 1–6 (2015) [Google Scholar]
  13. R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: a review with applications, Signal Processing 96 , 1–15 (2014) [Google Scholar]
  14. Y. Xiao, Y. Hong, X. Chen, W. Chen, The application of Dual-Tree Complex Wavelet Transform (DTCWT) energy entropy in misalignment fault Diagnosis of Doubly-Fed Wind Turbine (DFWT), Entropy 19 , 1–14 (2017) [Google Scholar]
  15. A. Umbrajkaar, A. Krishnamoorthy, Vibration analysis using wavelet transform and fuzzy logic for shaft misalignment, Journal of Vibroengineering 20 , 2855–2865 (2018) [Google Scholar]
  16. L. Yongjian, W. Hongjun, A revised Hilbert-Huang transform and its application to fault diagnosis in a rotor system, Sensors 18, 1–27 (2018) [Google Scholar]
  17. G. Dinardo, L. Fabbiano, G. Vacca, Energy-based indexes for analysis of vibrations from rotating machinery based on the Hilbert-Huang transform, in: E.P. Tomasini (Ed.), Proceedings of the 12th International AIVELA Conference on Vibration Measurements by Laser and Noncontact Techniques: Advances and Applications. (AIP Conference Proceedings) 2016 [Google Scholar]
  18. X. Fu, H. Xu, Y. Lin, Z. Xiao, Vibration analysis on the mechanisms for hydropower unit rotors based on empirical mode decomposition, Journal of Optoelectronics and Advanced Materials 16 , 689–696 (2014) [Google Scholar]
  19. S. Singh, N. Kumar, Combined rotor fault diagnosis in rotating machinery using empirical mode decomposition, Journal of Mechanical Science and Technology 28 , 4869–4876 (2014) [Google Scholar]
  20. Z.R. Hou, Rolling bearing fault diagnosis based on wavelet packet and improved BP neural network for wind turbines, Applied Mechanics and Materials 347–350 , 117–120 (2013) [Google Scholar]
  21. Y. Xue, Z. Li, B. Wang, Z. Zhao, F.J.A.I. Li, Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis, Applied Intelligence 48 , 3306–3331 (2018) [Google Scholar]
  22. N. Mayadevi, V.P. Mini, R.H. Kumar, S. Prins, Fuzzy-Based Intelligent Algorithm for Diagnosis of Drive Faults in Induction Motor Drive System, Arabian Journal for Science and Engineering 45, 1385–1395 (2020) [Google Scholar]
  23. Y. Dalian, M. Jingjing, Z. Fanyu, T. Jie, W. Guangbin, S. Yiping, Bearing fault diagnosis using a support vector machine optimized by an improved ant lion optimizer, Shock and Vibration 2019, 1–20 (2019) [Google Scholar]
  24. Y. Dalian, L. Yilun, L. Songbai, L. Xuejun, M. Liyong, Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm, Mechanism and Machine Theory 90, 219–229 (2015) [Google Scholar]
  25. G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 , 504–507 (2006) [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. Z. Ling, X. Li, W. Zou, M. Liu, Joint haze-relevant features selection and transmission estimation via deep belief network for efficient single image dehazing, in: 2018 24th International Conference on Pattern Recognition (ICPR), IEEE, Beijing, China, 2018 [Google Scholar]
  27. Z. Fengyu, Y. Jianqin, Y. Yang, Z. Haiting, Y. Xianfeng, Online recognition of human actions based on temporal deep belief neural network, Acta Automatica Snica 42, 1030–1039 (2016) [Google Scholar]
  28. M. Chen, J. Pan, Q. Zhao, Y. Yan, Multi-task learning in deep neural networks for Mandarin-English code-mixing speech recognition, IEICE Transactions on Information and Systems E99.D , 2554–2557 (2016) [Google Scholar]
  29. Z. Xiaoli, J. Minping, A new Local-Global Deep Neural Network and its application in rotating machinery fault diagnosis, Neurocomputing 366, 215–233 (2019) [Google Scholar]
  30. K. Zhao, H. Shao, Intelligent fault diagnosis of rolling bearing using adaptive deep gated recurrent unit, Neural Processing Letters 51 , 1165–1184 (2020) [Google Scholar]
  31. X. He, J. Ma, Weak fault diagnosis of rolling bearing based on FRFT and DBN, Systems Science & Control Engineering 8 , 57–66 (2020) [Google Scholar]
  32. B. Han, X. Yang, Y. Ren, W. Lan, Comparisons of different deep learning-based methods on fault diagnosis for geared system, International Journal of Distributed Sensor Networks 15 , 1–16 (2019) [Google Scholar]
  33. J. Li, X. Li, D. He, Y. Qu, Unsupervised rotating machinery fault diagnosis method based on integrated SAE-DBN and a binary processor, Journal of Intelligent Manufacturing 31, 1899–1916 (2020) [Google Scholar]
  34. P. Tamilselvan, P. Wang, Failure diagnosis using deep belief learning based health state classification, Reliability Engineering System Safety 115 , 124–135 (2013) [Google Scholar]
  35. X. Jiang, Y. He, G. Li, Y. Liu, X.-P. Zhang, Building damage detection via superpixel-based belief fusion of space-borne SAR and optical images, IEEE Sensors Journal 20 , 2008–2022 (2020) [Google Scholar]
  36. T. Tang, T. Hu, M. Chen, R. Lin, G. Chen, A deep convolutional neural network approach with information fusion for bearing fault diagnosis under different working conditions, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 203, 1989–1996 (2020) [Google Scholar]
  37. M.K. Abd Ghani, M.A. Mohammed, N. Arunkumar, S.A. Mostafa, D.A. Ibrahim, M.K. Abdullah, M.M. Jaber, E. Abdulhay, G. Ramirez-Gonzalez, M.A. Burhanuddin, Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques, Neural Computing & Applications 32 , 625–638 (2020) [Google Scholar]
  38. L.-x. Luo, Information fusion for wireless sensor network based on mass deep auto-encoder learning and adaptive weighted D-S evidence synthesis, Journal of Ambient Intelligence and Humanized Computing 11 , 519–526 (2020) [Google Scholar]
  39. F. Xiao, A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion, Information Sciences 514 , 462–483 (2020) [Google Scholar]
  40. A. Stief, J.R. Ottewill, J. Baranowski, M. Orkisz, A PCA and two-stage bayesian sensor fusion approach for diagnosing electrical and mechanical faults in induction motors, IEEE Transactions on Industrial Electronics 66 , 9510–9520 (2019) [Google Scholar]
  41. B. Tokhmechi, S. Ebrahimi, H. Azizi, S.R. Ghavami-Riabi, N. Farrokhi, Bayesian data fusion: a reliable approach for descriptive modeling of ore deposits, Journal of Mining and Environment 11 , 63–76 (2020) [Google Scholar]
  42. D. Teekaraman, S. Sendhilkumar, G.S. Mahalakshmi, Semantic provenance based trustworthy users classification on book-based social network using fuzzy decision tree, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 28 , 47–77 (2020) [Google Scholar]
  43. P. Bhattacharya, On the Dempster-Shafer evidence theory and non-hierarchical aggregation of belief structures, IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans 30 , 0–536 (2000) [Google Scholar]
  44. L.A. Zadeh, A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination, AI Magazine 7 , 85–90 (1986) [Google Scholar]
  45. A.L. Jousselme, D. Grenier, É. Bossé, A new distance between two bodies of evidence, Information Fusion 2 , 91–101 (2001) [Google Scholar]
  46. L. Ma, F. Zhang, J. Chen, Synthetic rule of evidence based on pignistic probability distance, Computer Engineering and Applications 51 , 61–66 (2015) [Google Scholar]
  47. J. Gonzalez-Lopez, S. Ventura, A. Cano, Distributed multi-label feature selection using individual mutual information measures, Knowledge-Based Systems 188 , 1–10 (2020) [Google Scholar]
  48. L. Zheng, Using mutual information as a cocitation similarity measure, Scientometrics 119 , 1695–1713 (2019) [Google Scholar]
  49. J. Tao, Y. Liu, D. Yang, Bearing fault diagnosis based on deep belief network and multisensor information fusion, Shock and Vibration 2016 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.