Open Access
Mechanics & Industry
Volume 24, 2023
Article Number 2
Number of page(s) 27
Published online 16 January 2023
  1. S.C. Tung, M.L. Mc Millan, Automotive tribology overview of current advances and challenges for the future, Tribol. Int. 37, 517–536 (2004) [CrossRef] [Google Scholar]
  2. A. Erdemir, C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects, J. Phys. D: Appl. Phys. 39, R311 (2006) [Google Scholar]
  3. L. Joly-Pottuz, J.M. Martin, F. Dassenoy, C. Schuffenhauer, R. Tenne, Fleischer, Inorganic fullerene-like NPs as new lubricant additives, WTC 2005, Washington, USA [Google Scholar]
  4. L. Joly-Pottuz, Lubricant NPs with closed structure, PhD thesis (French), Université de Lyon, Ecole Centrale de Lyon, France, 2005 [Google Scholar]
  5. I. Lahouij, Lubrication mechanisms of inorganic fullerene-like NPs: multi-scale approach, PhD thesis (French), Université de Lyon, Ecole Centrale de Lyon, 2012 [Google Scholar]
  6. C.S. Chen, X.H. Chen, J.M. Hu, H. Zhang, W.H. Li, L.S. Xu, Z. Yang, Effect of multi-walled carbon nanotubes on tribological properties of lubricant, Trans. Nonferrous Metals Soc. China 15, 300–305 (2005) [Google Scholar]
  7. R. Tenne, L. Margulis, M.E. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature 360, 444–446 (1992) [CrossRef] [Google Scholar]
  8. L. Cizaire, B. Vacher, T. Le Mogne, J.M. Martin, L. Rapoport, A. Margolin, R. Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles, Surface Coat. Technol. 160, 282–287 (2002) [CrossRef] [Google Scholar]
  9. L. Joly-Pottuz, F. Dassenoy, M. Belin, B. Vacher, J.M. Martin, N. Fleischer, Ultralow-friction and wear properties of IF-WS2 under boundary lubrication, Tribol. Lett. 18, 477–485 (2005) [CrossRef] [Google Scholar]
  10. Y.J.J. Jason, H.G. How, Y.H. Teoh, H.G. Chuah, A study on the tribological performance of nanolubricants, Processes 8, 1372 (2020) [CrossRef] [Google Scholar]
  11. H. Chen, Y. Ding, C. Tan, Rheological behavior of nanofluids, New J. Phys. 9, 367 (2007) [CrossRef] [Google Scholar]
  12. V.K. Stokes, Theories of Fluids with Microstructure: An Introduction (Springer, Berlin, Heidelberg, 1984) [CrossRef] [Google Scholar]
  13. V.K. Stokes, Couple-stresses in fluids, Phys. Fluids 9, 1709–1715 (1966) [Google Scholar]
  14. R.A. Hadjesfandiari, A. Hadjesfandiari, Skew-symmetric couple-stress fluid mechanics, Acta Mech. 226, 871–895 (2014) [Google Scholar]
  15. J.R. Lin, Effects of couple stresses on the lubrication of finite journal bearings, Wear 206, 171–178 (1997) [CrossRef] [Google Scholar]
  16. U.M. Mokhiamer, W.A. Crosby, H.A. El Gamal, A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner, Wear 224, 194–201 (1999) [CrossRef] [Google Scholar]
  17. M. Lahmar, Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple stress fluids, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 219, 145–165 (2005) [CrossRef] [Google Scholar]
  18. M. Lahmar, B. Bou-Saïd, Couple stress effects on the dynamic behavior of connecting rod bearings in both gasoline and diesel engines, Tribol. Trans. 51, 44–56 (2008) [CrossRef] [Google Scholar]
  19. H. Boucherit, M. Lahmar, B. Bou-Saïd, Misalignment effects on steady‐state and dynamic behavior of compliant journal bearings lubricated with couple stress fluids, Lubricat. Sci. 20, 241–268 (2008) [CrossRef] [Google Scholar]
  20. M. Lahmar, S. Ellagoune, B. Bou-Saïd, Elastohydrodynamic lubrication analysis of a compliant journal bearing considering static and dynamic deformations of the bearing liner, Tribol. Trans. 53, 349–368 (2010) [CrossRef] [Google Scholar]
  21. K.N. Prabhakaran, M. Shabbir Ahmed, S. Thamer Al-qahtani, Static and dynamic analysis of hydrodynamic journal bearing operating under nanolubricants, Int. J. Nanoparticles 2, 251–262 (2009) [Google Scholar]
  22. K.N. Prabhakaran, P.K. Rajendra, K. Babu, Thermohydrodynamic analysis of journal bearing operating under nanolubricants, in International Joint Tribology Conference (2011), p. 17–21 [Google Scholar]
  23. B.S. Shenoy, K.G. Binu, R. Pai et al., Effect of nanoparticles additives on the performance of an externally adjustable fluid film bearing, Tribol. Int. 45, 38–42 (2012) [CrossRef] [Google Scholar]
  24. S.B. Kalakada, P.N. Kumarapillai, P.K. Rajendra Kumar, Static characteristics of thermohydrodynamic journal bearing operating under lubricants containing nanoparticles, Ind. Lubric. Tribol. 67, 38–46 (2015) [Google Scholar]
  25. K.G. Binu, B.S. Shenoy, D.S. Rao, Static characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger-Dougherty viscosity model and couple stress model, Tribol. Int. 75, 69–79 (2014) [CrossRef] [Google Scholar]
  26. H. Sadabadi, A. Sanati Nezhad, Nanofluids for performance improvement of heavy machinery journal bearings: a simulation study, Nanomaterials 10, 2120 (2020) [CrossRef] [PubMed] [Google Scholar]
  27. Z.H. Kadhim, S.Y. Ahmed, B.A. Abass, CFD analysis of nano-lubricated journal bearing considering variable viscosity and elastic deformation effects, Diagnostyka 23, 1–8(2022) [Google Scholar]
  28. R.K. Dang, A. Chauhan, S. Dhami, Static thermal performance evaluation of elliptical journal bearings with nanolubricants, J. Eng. Tribol. Part J. 235, 1–13 (2020) [Google Scholar]
  29. T.P. Gundarneeya, D.P. Vakharia, Performance analysis of journal bearing operating on nanolubricants with TiO2, CuO, and Al2O3 nanoparticles as lubricant additives, Mater. Today: Proc. (2021) [Google Scholar]
  30. A. Bangotra, S. Sharma, Impact of surface waviness on the static performance of journal bearing with Cu0 and CeO2 NPs in the lubricant, Ind. Lubric. Tribol. 74, 853–867 (2022) [CrossRef] [Google Scholar]
  31. D. Byotra, S. Sharma, Performance analysis of textured journal bearings operating with and without NPs in the lubricant, Ind. Lubric. Tribol. (2022) [Google Scholar]
  32. I.M. Krieger T.J. Dougherty, A mechanism for non‐Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol. 3, 137–152 (1959) [CrossRef] [Google Scholar]
  33. I.M. Mahbubul, R. Saidur, M.A. Almalina, Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transfer 55, 874–885 (2012) [CrossRef] [Google Scholar]
  34. V. Morgan, A. Cameron, Mechanisms of lubrication in porous metal bearing, Proceedings, Conference on Lubrication and Wear, The Institution of Mechanical Engineers, London (1957), pp. 151–157 [Google Scholar]
  35. S. Boedo, J.F. Booker, Classical bearing misalignment and edge loading: a numerical study of limiting cases, J. Tribol. 126, 535–541 (2004) [CrossRef] [Google Scholar]
  36. M. Kole, T.K. Dey, Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids, Int. J. Therm. Sci. 50, 1741–1747 (2011) [CrossRef] [Google Scholar]
  37. A. Fatu, Modélisation numérique et expérimentale de la lubrification des paliers de moteur soumis à des conditions sévères de fonctionnement, PhD thesis (French), Université de Poitiers, 2005 [Google Scholar]
  38. S. Van Buuren, Modeling and simulation of porous journal bearings in multibody systems, PhD thesis, Karlsruhe Institute of Technology (KIT), 2013, ISBN 978-3-7315- 0084-1 [Google Scholar]
  39. J.Y. Jang, M.M. Khonsari, Performance and characterization of dynamically-loaded engine bearings with provision for misalignment, Tribol. Int. 130, 387–399 (2019) [CrossRef] [Google Scholar]
  40. M. Lahmar, S. Ellagoune, B. Bou-Saïd, Elasto-hydrodynamic lubrication analysis of a compliant journal bearing considering static and dynamic deformations of the bearing liner, Tribol. Trans. 53, 349–368 (2010) [CrossRef] [Google Scholar]
  41. A.A. Elsharkawy, L.H. Guedouar, Hydrodynamic lubrication of porous journal bearings using a modified Brinkman-extended Darcy model, Tribol. Int. 34, 767–777 (2001) [CrossRef] [Google Scholar]
  42. A.A. Elsharkawy, L.H. Guedouar, Direct and inverse solutions for elastohydrodynamic lubrication of finite porous journal bearings, J. Tribol. 123, 276–282 (2001) [CrossRef] [Google Scholar]
  43. E. Kuznetso, S. Glavatskih, Dynamic characteristics of compliant journal bearings considering thermal effects, Tribol. Int. 94, 288–305 (2016) [CrossRef] [Google Scholar]
  44. B. Laouadi, M. Lahmar, B. Bou-Saïd, Analysis of couple-stresses and piezo-viscous effects in a layered connecting-rod bearing, Mech. Ind. 19, 607 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  45. J.L. Batoz, G. Dhatt, Modélisation des structures par éléments finis: Solides élastiques. Presses Université Laval, 1990 [Google Scholar]
  46. B.J. Hamrock, S.R. Schmid, B.O. Jacobson, Fundamentals of fluid film lubrication (CRC Press, 2004) [CrossRef] [Google Scholar]
  47. R.S. Paranjpe, P.K. Goenka, Analysis of crankshaft bearings using a mass conserving algorithm, Tribol. Trans. 33, 333–344 (1990) [CrossRef] [Google Scholar]
  48. H. Hirani, K. Athre, S. Biswas, Rapid and globally convergent method for dynamically loaded journal bearing design, Proc. Inst. Mech. Eng. J 212, 207–214 (1998) [CrossRef] [Google Scholar]
  49. J.P. Campbell, P.P. Love, F.A. Martin, Paper 4: bearings for reciprocating machinery: a review of the present state of theoretical, experimental and service knowledge, Proc. Inst. Mech. Eng. Conf. Proc. (SAGE Publications, Sage UK: London, England, 1967), pp. 51–74 [Google Scholar]
  50. M. Lahmar, B. Bou-Saïd, Couple stress effects on the dynamic behavior of connecting rod bearings in both gasoline and diesel engines, Tribol. Trans. 51, 44–56 (2008) [CrossRef] [Google Scholar]
  51. J.F. Booker, Dynamically loaded journal bearings: mobility method of solution, Trans. ASME, J. Basic Engng, Ser. D 187, 537–546 (1965) [CrossRef] [Google Scholar]
  52. P.K. Goenka, Analytical curve fits for solution parameters of dynamically loaded journal bearings, Trans. ASME J. Tribol. 106, 421–428 (1984) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.