Open Access
Mechanics & Industry
Volume 25, 2024
Article Number 12
Number of page(s) 12
Published online 09 April 2024
  1. S. Park, J. Kim, M. Yoon, D. Rhim, C. Yeom, Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle, Appl. Thermal Eng. 130, 611–623 (2018) [Google Scholar]
  2. T. Dudziak, K. Jura, A. Polkowska, V. Deodeshmukh, M. Warmuzek, M. Witkowska, K. Chruściel, Steam oxidation resistance of advanced steels and Ni-based alloys at 700° C for 1000 h, Oxidat. Metals 89, 755–779 (2018) [Google Scholar]
  3. L.M. Pike, Development of a fabricable gamma-prime (γ′) strengthened superalloy, Superalloys 2008, 191–200 (2008) [Google Scholar]
  4. Y.J. Kim, J.H. Park, Y.S. Ahn, Comparison of creep properties of cast and wrought Haynes 282 superalloy, Adv. Mater. Sci. Eng. 2018 (2018) [Google Scholar]
  5. H. Matysiak, M. Zagorska, J. Andersson, A. Balkowiec, R. Cygan, M. Rasinski, K.J. Kurzydlowski, Microstructure of Haynes® 282® superalloy after vacuum induction melting and investment casting of thin-walled components, Materials 6, 5016–5037 (2013) [Google Scholar]
  6. P.D. Jablonski, J.A. Hawk, C.J. Cowen et al., Processing of advanced cast alloys for A-USC steam turbine applications, JOM 64, 271–279 (2012) [Google Scholar]
  7. Y.J. Kim, J.H. Park, Y.S. Ahn, Comparison of creep properties of cast and wrought Haynes 282 superalloy, Adv. Mater. Sci. Eng. (2018). doi: 10.1155/2018/2048959 [Google Scholar]
  8. S. Briks, S. Roberts, R. Leese, Advances in materials technology for fossil power plants, in Adv. Mater. Technol. Foss. Power Plants Proc. 7th Int. Conference (2013) pp. 491–503 [Google Scholar]
  9. M. Dhondt, I. Aubert, N. Saintier, J.M. Olive, Characterization of intergranular stress corrosion cracking behavior of a FSW Al-Cu-Li 2050 nugget, Mech. Ind. 16, 401 (2015) [Google Scholar]
  10. J. Carrier, E. Markiewicz, G. Haugou, D. Lebaillif, N. Leconte, H. Naceur, Thermal effect of the welding process on the dynamic behavior of the HSS constitutive materials of a fillet welded joint, Mech. Ind. 18, 301 (2017) [Google Scholar]
  11. K.A. Unocic, M.M. Kirka, E. Cakmak, D. Greeley, A.O. Okello, S. Dryepondt, Evaluation of additive electron beam melting of Haynes 282 alloy, Mater. Sci. Eng. A 772, 138607 (2020) [Google Scholar]
  12. A. Deshpande, S. Deb Nath, S. Atre, K. Hsu, Effect of post processing heat treatment routes on microstructure and mechanical property evolution of Haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM), Metals 10, 629 (2020) [Google Scholar]
  13. A. Ramakrishnan, G.P. Dinda, Microstructure and mechanical properties of direct laser metal deposited Haynes 282 superalloy, Mater. Sci. Eng. A 748, 347–356 (2019) [Google Scholar]
  14. J. Boswell, J. Jones, N. Barnard, D. Clark, M. Whittaker, R. Lancaster, The effects of energy density and heat treatment on the microstructure and mechanical properties of laser additive manufactured Haynes 282, Mater. Des. 2021, 109725 (2021) [Google Scholar]
  15. L.M. Pike, Development of a fabricable gamma-prime (γ′) strengthened superalloy, Superalloys 2008, 191–200 (2008) [Google Scholar]
  16. L.O. Osoba, O.A. Ojo, Influence of laser welding heat input on HAZ cracking in newly developed Haynes 282 superalloy, Mater. Sci. Technol. 28, 431–436 (2012) [Google Scholar]
  17. Y. Yang, R.C. Thomson, R.M. Leese, S. Roberts, Microstructural evolution in cast Haynes 282 for application in advanced power plants, in D. Gandy, J. Shingledecker (eds.), Advances in Materials Technology for Fossil Power Plants, Proceedings of the 7th International Conference (EPRI 2013), Waikoloa, Hawaii, USA. ASM International (2013). pp. 143–154 [Google Scholar]
  18. Y. Yang, Microstructural evolution of large cast Haynes 282 at elevated temperature, Crystals 11, 867 (2021) [Google Scholar]
  19. S. Singh, J. Andersson, Heat-affected-zone liquation cracking in welded cast Haynes 282, Metals 10, 29 (2019) [Google Scholar]
  20. P.D. Jablonski, C.J. Cowen, Homogenizing a nickel-based superalloy: thermodynamic and kinetic simulation and experimental results, Metall. Mater. Trans. B 40, 182–186 (2009) [Google Scholar]
  21. R. Davies, A.T. Dinsdale, J. Gisby, J.A. Robinson, S. Martin, MTDATA − thermodynamic and phase equilibrium software from the National Physical Laboratory. Calphad-computer Coupling of Phase Diagrams and Thermochemistry, 26, 229–271 (2002) [Google Scholar]
  22. N. Saunders,. Phase Diagram Calculations for Ni-based superalloys. Superalloys, 101–110 (1996) [Google Scholar]
  23. G. Evans, Metal/Ceramic Interfaces: Relationships Between Structures, Chemistry and Interfaces (University of California, 1991) [Google Scholar]
  24. T. Clyne, P. Withers, An introduction to metal matrix composites: The Eshelby approach to modelling composites (Cambridge University Press, 1993) [Google Scholar]
  25. A. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, First Edit (Chapman & Hall, 1997) [Google Scholar]
  26. B.H.L. Logan, Effect of the quenching rate on susceptibility to intercrystalline corrosion of heat treated 24s aluminium alloy sheet, J. Res. Natl. Bur. Stand. 26, 321–329 (1934) [Google Scholar]
  27. K.Y. Shin, J.H. Kim, M. Terner, B.O. Kong, H.U. Hong, Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy, Mater. Sci. Eng.: A 751, 311–322 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.