Open Access
Issue |
Mechanics & Industry
Volume 26, 2025
|
|
---|---|---|
Article Number | 10 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/meca/2025004 | |
Published online | 12 March 2025 |
- J. Boussinesq, Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris, 1885 [Google Scholar]
- V. Cerruti, Ricerche Intorno All’equilibrio de’corpi Elastici Isotropi. Reale Accaemia dei Lincei, Roma, 1882 [Google Scholar]
- H. Hertz, Über die Berührung fester elastischer Körper, Zeitung Reine Angew. Math. 92, 156-171 (1882) [CrossRef] [Google Scholar]
- D.A. Hills, D. Nowell, A. Sackfield, Mechanics of Elastic Contacts. Butterworth-Heinemann, Oxford [England]; Boston, 1993 [Google Scholar]
- N.R. Paulson, J.A.R. Bomidi, F. Sadeghi, R.D. Evans, Effects of crystal elasticity on rolling contact fatigue, Int. J. Fatigue 61, 67-75 (2014) [Google Scholar]
- J.-P. Noyel, F. Ville, P. Jacquet, A. Gravouil, C. Changenet, Development of a granular cohesive model for rolling contact fatigue analysis: crystal anisotropy modeling, Tribol. Trans. 59, 469-479 (2016) [CrossRef] [Google Scholar]
- H. Boffy, C.H. Venner, Multigrid solution of the 3D stress field in strongly heterogeneous materials, Tribol. Int. 74, 121-129 (2014) [CrossRef] [Google Scholar]
- B. Zhang, H. Boffy, C.H. Venner, Multigrid solution of 2D and 3D stress fields in contact mechanics of anisotropic inhomogeneous materials, Tribol. Int. 149, 105636 (2020) [CrossRef] [Google Scholar]
- R.A. Lebensohn, A.D. Rollett, Spectral methods for fullfield micromechanical modelling of polycrystalline materials, Computat. Mater. Sci. 173, 109336 (2020) [CrossRef] [Google Scholar]
- J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 241, 376-396 (1957) [Google Scholar]
- J.D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 252, 561-569 (1959) [Google Scholar]
- T. Mura, Micromechanics of Defects in Solids. No. 3 in Mechanics of Elastic and Inelastic Solids, 2 edn., M. Nijhoff; Distributors for the U.S. and Canada, Kluwer Academic Publishers, Dordrecht, Netherlands ; Boston : Hingham, MA, USA, 1987 [CrossRef] [Google Scholar]
- H. Moulinec, P. Suquet, A fast numerical method for computing the linear and nonlinear mechanical properties of composites, Comptes Rendus Acad. Sci. Sér II Méc. Phys. Chim. Astron. 318, 1417-1423 (1994). [Google Scholar]
- H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng. 157, 69-94 (1998) [CrossRef] [Google Scholar]
- F. Sadeghi, B. Jalalahmadi, T.S. Slack, N. Raje, N.K. Arakere, A review of rolling contact fatigue, J. Tribol. 131, 041403 (2009) [CrossRef] [Google Scholar]
- Q.J. Wang, L. Sun, X. Zhang, S. Liu, D. Zhu, FFT-based methods for computational contact mechanics, Front. Mech. Eng. 6, 61 (2020). [CrossRef] [Google Scholar]
- S. Lucarini, M.V. Upadhyay, J. Segurado, FFT based approaches in micromechanics: fundamentals, methods and applications, Model. Simul. Mater. Sci. Eng. 30, 023002 (2022). [CrossRef] [Google Scholar]
- G. Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, T. Wheelhouse, Nottingham, 1828 [Google Scholar]
- J. Fourier, Théorie Analytique de La Chaleur, Firmin Didot, Paris, 1822 [Google Scholar]
- I. Polonsky, L. Keer, A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques, Wear 231, 206-219 (1999) [CrossRef] [Google Scholar]
- P. Sainsot, A.A. Lubrecht, Efficient solution of the dry contact of rough surfaces: a comparison of fast Fourier transform and multigrid methods, Proc. Inst. Mech. Eng. J 225, 441-448 (2011). [CrossRef] [Google Scholar]
- S. Liu, Q. Wang, G. Liu, A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses, Wear 243, 101-111 (2000) [CrossRef] [Google Scholar]
- L. Frérot, G. Anciaux, V. Rey, S. Pham-Ba, J.-F. Molinari, Tamaas: a library for elastic–plastic contact of periodic rough surfaces, J. Open Source Softw. 5, 2121 (2020) [CrossRef] [Google Scholar]
- M.H. Müser, W.B. Dapp, R. Bugnicourt, P. Sainsot, N. Lesaffre, T.A. Lubrecht, B.N.J. Persson, K. Harris, A. Bennett, K. Schulze, S. Rohde, P. Ifju, W.G. Sawyer, T. Angelini, H. Ashtari Esfahani, M. Kadkhodaei, S. Akbarzadeh, J.-J. Wu, G. Vorlaufer, A. Vernes, S. Solhjoo, A.I. Vakis, R.L. Jackson, Y. Xu, J. Streator, A. Rostami, D. Dini, S. Medina, G. Carbone, F. Bottiglione, L. Afferrante, J. Monti, L. Pastewka, M.O. Robbins, J.A. Greenwood, Meeting the contact-mechanics challenge, Tribol. Lett. 65, 118 (2017) [CrossRef] [Google Scholar]
- M. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bureau Standards 49, 409 (1952) [CrossRef] [Google Scholar]
- K.L. Johnson, Contact Mechanics. Cambridge University Press, Cambridge, 1987 [Google Scholar]
- J.J. Kalker, Three-Dimensional Elastic Bodies in Rolling Contact, vol. 2 of Solid Mechanics and Its Applications. Springer Netherlands, Dordrecht, 1990 [Google Scholar]
- G. Duvaut, J.L. Lions, Les inéquations en mécanique et en Physique, Dunod, Paris, 1972 [Google Scholar]
- A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn., Cambridge University Press, 1927 [Google Scholar]
- C. Mayeur, P. Sainsot, L. Flamand, A numerical elasto- plastic model for rough contact, J. Tribol. 117, 422-429 (1995) [CrossRef] [Google Scholar]
- P. Sainsot, C. Jacq, D. Nelias, A numerical model for elasto- plastic rough contact, Comput. Model. Eng. Sci. 3, 497-506 (2002) [Google Scholar]
- F. Wang, L.M. Keer, Numerical simulation for three dimensional elastic-plastic contact with hardening behavior, J. Tribol. 127, 494-502 (2005) [CrossRef] [Google Scholar]
- K. Zhou, W.W. Chen, L.M. Keer, Q.J. Wang, A fast method for solving three-dimensional arbitrarily shaped inclusions in a half space, Comput. Methods Appl. Mech. Eng. 198, 885-892 (2009) [CrossRef] [Google Scholar]
- J. Leroux, B. Fulleringer, D. Nelias, Contact analysis in presence of spherical inhomogeneities within a half-space, Int. J. Solids Struct. 47, 3034-3049 (2010) [Google Scholar]
- K. Zhou, W. Wayne Chen, L.M. Keer, X. Ai, K. Sawamiphakdi, P. Glaws, Q. Jane Wang, Multiple 3D inhomogeneous inclusions in a half space under contact loading, Mech. Mater. 43, 444-457 (2011) [CrossRef] [Google Scholar]
- E. Kröner, Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys. 151, 504-518 (1958) [CrossRef] [Google Scholar]
- F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, Comptes Rendus Méc. 343, 232-245 (2015) [Google Scholar]
- R.A. Lebensohn, R. Brenner, O. Castelnau, A.D. Rollett, Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper, Acta Materialia 56, 3914-3926 (2008) [CrossRef] [Google Scholar]
- P. Suquet, H. Moulinec, O. Castelnau, M. Montagnat, N. Lahellec, F. Grennerat, P. Duval, R. Brenner, Multiscale modeling of the mechanical behavior of polycrystalline ice under transient creep, Procedia IUTAM 3, 76-90 (2012) [CrossRef] [Google Scholar]
- J.-B. Gasnier, F. Willot, H. Trumel, B. Figliuzzi, D. Jeulin, M. Biessy, A Fourier-based numerical homogenization tool for an explosive material, Matér. Tech. 103, 308 (2015) [Google Scholar]
- A. Schmidt, C. Gierden, J. Waimann, B. Svendsen, S. Reese, Two-scale FE-FFT-based thermo-mechanically coupled modeling of elasto-viscoplastic polycrystalline materials at finite strains, PAMM 22, e202200172 (2023) [CrossRef] [Google Scholar]
- N.B. Nkoumbou Kaptchouang, L. Gelebart, Extension des solveurs FFT aux conditions aux limites non périodiques et aux méthodes multi-grilles locales, in: 15ème Colloque National En Calcul Des Structures, (83400 Hyères- les-Palmiers, France), Université Polytechnique Hauts-de- France [UPHF], May 2022. [Google Scholar]
- C. Cocke, H. Mirmohammad, M. Zecevic, B. Phung, R. Lebensohn, O. Kingstedt, A. Spear, Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic FFT-based framework for predicting ductile fracture in 3D polycrystalline materials, Int. J. Plast. 162, 103508 (2023) [CrossRef] [Google Scholar]
- M. Zecevic, R.A. Lebensohn, L. Capolungo, Non-local large-strain FFT-based formulation and its application to interface-dominated plasticity of nano-metallic laminates, J. Mech. Phys. Solids 173, 105187 (2023) [CrossRef] [Google Scholar]
- R. Quey, P. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng. 200, 1729-1745 (2011) [CrossRef] [Google Scholar]
- W. Voigt, Lehrbuch Der Kristallphysik (Mit Ausschluss Der Kristalloptik), Teubner, Leipzig, Berlin, 1910 [Google Scholar]
- T.H. Courtney, Mechanical Behavior of Materials, 2nd edn. Waveland Press, Long Grove, Illinois, 2005 [Google Scholar]
- E. Bossy, J. Noyel, X. Kleber, F. Ville, C. Sidoroff, S. Thibault, Competition between surface and subsurface rolling contact fatigue failures of nitrided parts: a Dang Van approach, Tribol. Int. 140, 105888 (2019) [CrossRef] [Google Scholar]
- G. Vouaillat, J.-P. Noyel, F. Ville, X. Kleber, S. Rathery, From Hertzian contact to spur gears: Analyses of stresses and rolling contact fatigue, Mech. Ind. 20, 626 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- L. Fourel, J.-P. Noyel, E. Bossy, X. Kleber, P. Sainsot, F. Ville, Towards a grain-scale modeling of crack initiation in rolling contact fatigue – Part 1: shear stress considerations, Tribol. Int. 164, 107224 (2021) [CrossRef] [Google Scholar]
- L. Fourel, J.-P. Noyel, E. Bossy, X. Kleber, P. Sainsot, F. Ville, Towards a grain-scale modeling of crack initiation in rolling contact fatigue – Part 2: persistent slip band modeling, Tribol. Int. 163, 107173 (2021) [CrossRef] [Google Scholar]
- S. Coulon, F. Ville, and A.A. Lubrecht, Effect of a dent on the pressure distribution in dry point contacts, J. Tribol. 124, 220-223 (2002) [CrossRef] [Google Scholar]
- L. Fourel, J.-P. Noyel, X. Kleber, P. Sainsot, F. Ville, Numerical analysis of 3D crack initiation under rolling contact fatigue in polycrystals with surface dents and subsurface inclusions, in preparation, 2023 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.