Issue
Mechanics & Industry
Volume 26, 2025
Recent advances in vibrations, noise, and their use for machine monitoring
Article Number 13
Number of page(s) 13
DOI https://doi.org/10.1051/meca/2024030
Published online 27 March 2025
  1. C. Liu, Y. Meerten, K. Declercq, K. Gryllias, Vibration-based gear continuous generating grinding fault classification and interpretation with deep convolutional neural network, J. Manuf. Process. 79, 688–704 (2022) [Google Scholar]
  2. R.B. Randall, Vibration-based Condition Monitoring: Industrial, Automotive and Aerospace Applications, John Wiley & Sons (2021) [Google Scholar]
  3. A. Mauricio, J. Qi, K. Gryllias, Vibration-based condition monitoring of wind turbine gearboxes based on cyclostationary analysis, J. Eng. Gas. Turbines Power-Trans. ASME 141, 8 (2019) [Google Scholar]
  4. L. Gelman, K. Soliński, A. Ball, Novel higher-order spectral cross-correlation technologies for vibration sensor-based diagnosis of gearboxes, Sensors 20, 23 (2020) [Google Scholar]
  5. F. Combet, L. Gelman, G. LaPayne, Novel detection of local tooth damage in gears by the wavelet bicoherence, Mech. Syst. Signal Proc. 26, 218–228 (2012) [Google Scholar]
  6. C.R.P. Courtney, S.A. Neild, P.D. Wilcox, B.W. Drinkwater, Application of the bispectrum for detection of small nonlinearities excited sinusoidally, J. Sound Vibr. 329, 4279–4293 (2010) [Google Scholar]
  7. S. Zhang, J. Lian, J. Li, F. Liu, B. Ma, Wavelet bispectral analysis and nonlinear characteristics in waves generated by submerged jets, Ocean Eng. 264, 9 (2022) [Google Scholar]
  8. L.J. Hadjileontiadis, Continuous wavelet transform and higher-order spectrum: combinatory potentialities in breath sound analysis and electroencephalogram-based pain characterization, Phil. Trans. R. Soc. A 376, 16 (2018) [Google Scholar]
  9. A. Rivola, P.R. White, Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks, J. Sound Vibr. 216, 889–910 (1998) [Google Scholar]
  10. V. Gunasegaran, M. Amarnath, H. Chelladurai, I.R.P. Krishna, Assessment of local faults in helical geared system using vibro-acoustic signals based on higher order spectrum analysis, Appl. Acoust. 204, 15 (2023) [Google Scholar]
  11. L. Gelman, K. Solinski, B. Shaw, M. Vaidhianathasamy, Vibration diagnosis of a gearbox by wavelet bicoherence technology, Insight 59, 440–444 (2017) [Google Scholar]
  12. Y. Li, J. Lin, X. Wang, Y. Lei, Biphase randomization wavelet bicoherence for mechanical fault diagnosis, Measurement 49, 407–420 (2014) [Google Scholar]
  13. Y. Li, S.P. Zhou, A new instantaneous wavelet bicoherence for local fault detection of rotating machinery, IEEE Trans. Instrum. Meas. 69, 135–143 (2020) [Google Scholar]
  14. K.C. Gryllias, L. Gelman, B. Shaw, M. Vaidhianathasamy, Local damage diagnosis in gearboxes using novel wavelet technology, Insight 52, 437–441 (2010) [Google Scholar]
  15. R. Zhu, G. Mousmoulis, K. Gryllias, An enhanced wavelet-based instantaneous feature for local damage diagnosis of gears, Proceedings of ISMA-USD2022 conference, Leuven, Belgium (2022) pp. 639–651 [Google Scholar]
  16. R. Zhu, G. Mousmoulis, K. Gryllias, Wavelet-based high order spectrum for local damage diagnosis of gears under different operating conditions, in Surveillance, Vibrations, Shock and Noise, Toulouse, France, 2023, July [online] [Google Scholar]
  17. A.J. Hillis, S.A. Neild, B.W. Drinkwater, P.D. Wilcox, Global crack detection using bispectral analysis, Phys. E Sci. 462, 1515–1530 (2006) [Google Scholar]
  18. B.P. Vanmilligen, E. Sanchez, T. Estrada, C. Hidalgo, B. Branas, B. Carreras, L. Garcia, Wavelet bicoherence: a new turbulence analysis tool, Phys. Plasmas 2, 3017–3032 (1995) [MathSciNet] [Google Scholar]
  19. F. Combet, L. Gelman, An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor, Mech. Syst. Signal Proc. 21, 2590–2606 (2007) [Google Scholar]
  20. E. Bechhoefer, D. He, Calculating A tachometer signal from onboard A smart vibration sensor, in Proceedings of the annual conference of the prognostics and health management society PHM (2018) [Google Scholar]
  21. E. Bechhoefer, B. Butterworth, A comprehensive analysis of the performance of gear fault detection algorithms, PHM Society Annual Conference (2019) [Google Scholar]
  22. C. Capdessus, M. Sidahmed, J.L. Lacoume, Cyclostationary processes: application in gear faults early diagnosis, Mech. Syst. Signal Proc. 14, 371–385 (2000) [Google Scholar]
  23. M. Kedadouche, M. Thomas, A. Tahan, R. Guilbault, Nonlinear parameters for monitoring gear: comparison between Lempel-Ziv, approximate entropy, and sample entropy complexity, Shock Vib. 2015, 12 (2015) [Google Scholar]
  24. A. Parey, M. El Badaoui, F. Guillet, N. Tandon, Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect, J. Sound Vibr. 294, 547–561 (2006) [Google Scholar]
  25. M. Ayad, D. Chikouche, N. Boukazzoula, M. Rezki, Search of a robust defect signature in gear systems across adaptive Morlet wavelet of vibration signals, IET Signal Process. 8, 918–926 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.