Issue
Mechanics & Industry
Volume 26, 2025
Robotic Process Automation for Smarter Devices in Manufacturing
Article Number 11
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2025006
Published online 20 March 2025
  1. Y.G. Lei, W. Tang, D.T. Kong et al., Vibration signal simulation and fault diagnosis of planetary gearboxes based on transmission mechanism analysis, J. Mech. Eng. 50, 61–68 (2014) [Google Scholar]
  2. S. Zhang, B. Wang, M. Kanemaru et al., Model-based analysis and quantification of bearing faults in induction machines, IEEE Trans. Ind. Appl. 56, 2158–2170 (2020) [CrossRef] [Google Scholar]
  3. Z. Cheng, B. Liu, X. Chen, Fault feature extraction and diagnosis method for gearbox under variable operating conditions, AIP Adv. 14 (2024) [Google Scholar]
  4. R. Han, J. Wang, Y. Wan, Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition, Measur. Sci. Technol. 35, 042001 (2024) [Google Scholar]
  5. D. Zhao, J. Li, W. Cheng, Vold-Kalman generalized demodulation for multi-faults detection of gear and bearing under variable speeds, Proc. Manufactur. 26, 1213–1220 (2018) [Google Scholar]
  6. K. Gryllias, H. Andre, Q. Leclere, Condition monitoring of rotating machinery under varying operating conditions based on Cyclo-Non-Stationary Indicators and a multi-order probabilistic approach for Instantaneous Angular Speed tracking, IFAC-PapersOnLine 50, 4708–4713 (2017) [CrossRef] [Google Scholar]
  7. J.L. Gomez, A. Bourdon, H. André, Modelling deep groove ball bearing localized defects inducing instantaneous angular speed variations, Tribol. Int. 98, 270–281 (2016) [CrossRef] [Google Scholar]
  8. M. Kowalski, A. Meynard, H. Wu, Convex optimization approach to signals with fast varying instantaneous frequency, Appl. Comput. Harmonic Anal. 44, 89–122 (2018) [Google Scholar]
  9. Y. Wang, J. Ding, H. Sun et al., Deep signal separation for adaptive estimation of instantaneous phase from vibration signals, Exp. Syst. Appl. 246, 123187 (2024) [CrossRef] [Google Scholar]
  10. L. Jiang, J. Hu, Q. Zhou, Multisynchrosqueezing short-time fractional Fourier transform and its application in rolling bearing instantaneous frequency estimation, Measur. Sci. Technol. 35, 025022 (2023) [Google Scholar]
  11. J.Y. Lee, Variable short-time Fourier transform for vibration signals with transients, J. Vibr. Control 21, 1383–1397 (2015) [Google Scholar]
  12. S. Wan, X. Zhao, Y. Wang, A fault diagnosis method for variable speed gearbox bearing based on SET improved multi-source ridge line, Measurement 214, 112758 (2023) [Google Scholar]
  13. C. Xu, Y. Liao, Weight extracting transform for instantaneous frequency estimation and signal reconstruction, Mech. Syst. Signal Process. 216, 111475 (2024) [Google Scholar]
  14. J. Yuan, Z. Yao, H. Jiang, Multi-lifting synchrosqueezing transform for nonstationary signal analysis of rotating machinery, Measurement 191, 110758 (2022) [Google Scholar]
  15. D. Bačnar, N. Saulig, I. Petrijevčanin Vuksanović, Entropy-based concentration and instantaneous frequency of TFDs from Cohen's, affine, and reassigned classes, Sensors 22, 3727 (2022) [Google Scholar]
  16. S. Meignen, N. Singh, Analysis of reassignment operators used in synchrosqueezing transforms: with an application to instantaneous frequency estimation, IEEE Trans. Signal Process. 70, 216–227 (2021) [Google Scholar]
  17. J. Huo, J. Yang, D. Yao, Bearing fault diagnosis under variable speed conditions on adaptive time frequency extraction mode decomposition, Measur. Sci. Technol. 35, 076102 (2024) [Google Scholar]
  18. M. Li, T. Wang, Y. Kong et al., Synchro-reassigning transform for instantaneous frequency estimation and signal reconstruction, IEEE Trans. Ind. Electr. 69, 7263–7274 (2021) [Google Scholar]
  19. G. Yu, M. Yu, C. Xu, Synchroextracting transform, IEEE Trans. Ind. Electr. 64, 8042–8054 (2017) [CrossRef] [Google Scholar]
  20. Z. Li, J. Gao, H. Li et al., Synchroextracting transform: The theory analysis and comparisons with the synchrosqueezing transform, Signal Processing 166, 107243 (2020) [Google Scholar]
  21. H. Yang, K. Zhang, Z. Jiang et al., Fault features diagnosis method of rolling bearing via optimized synchroextracting transform, IEEE Trans. Instrument. Measur. (2024) [Google Scholar]
  22. K. Feng, J.C. Ji, Q. Ni, A novel adaptive bandwidth selection method for Vold–Kalman filtering and its application in wind turbine planetary gearbox diagnostics, Struct. Health Monitor. 22, 1027–1048 (2023) [Google Scholar]
  23. Y. Li, K. Feng, X. Liang et al., A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy, J. Sound Vibra. 439, 271–286 (2019) [Google Scholar]
  24. J. Alsalaet, Improved multi-order Vold-Kalman filter for order tracking analysis using split cosine and sine terms, Measurement 224, 113901 (2024) [Google Scholar]
  25. M. Aoi, K. Lepage, Y. Lim, An approach to time-frequency analysis with ridges of the continuous chirplet transform, IEEE Trans. Signal Process. 63, 699–710 (2014) [Google Scholar]
  26. Y. Huang, W. Bao, F. Li, Sparse time-frequency analysis based on instantaneous frequency estimation and fault diagnosis application, IEEE Trans. Instrum. Measur. 71, 1–9 (2022) [Google Scholar]
  27. X. Li, H. Zhao, L. Yu, Feature extraction using parameterized multisynchrosqueezing transform, IEEE Sens. J. 22, 14263–14272 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.