Open Access
Issue
Mechanics & Industry
Volume 20, Number 1, 2019
Article Number 109
Number of page(s) 15
DOI https://doi.org/10.1051/meca/2018052
Published online 04 April 2019
  1. V.N. Gaitonde, S.R. Karnik, M. Faustino, J.P. Davim, Machinability analysis in turning tungsten-copper composite for application in EDM electrodes, Int. J. Refract. Metals Hard Mater. 27 (2009) 754–763 [CrossRef] [Google Scholar]
  2. N. Mandal, B. Doloi, B. Mondal, Force prediction model of zirconia toughened alumina (ZTA) inserts in hard turning of AISI 4340 steel using response surface methodology, Int. J. Precis. Eng. Manuf. 13 (2012) 1589–1599 [CrossRef] [Google Scholar]
  3. K. Palanikumar, Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling, Int. J. Adv. Manuf. Technol. 36 (2008) 19–27 [CrossRef] [Google Scholar]
  4. A.K. Sahoo, B. Sahoo, Mathematical modeling and multi-response optimization using response surface methodology and grey based Taguchi method: an experimental investigation, Int. J. Exp. Des. Process. Optimis. 2 (2011) 221–242 [CrossRef] [Google Scholar]
  5. S. Benlahmidi, H. Aouici, F. Boutaghane, A. Khellaf, B. Fnides, M.A. Yallese, Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools, Int. J. Adv. Manuf. Technol. 89 (2017) 803–820 [CrossRef] [Google Scholar]
  6. H. Jenn-Tsong, L. Nun-Ming, C. Ko-Ta, Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology, J. Mater. Process. Technol. 208 (2008) 532–541 [CrossRef] [Google Scholar]
  7. G.C. Benga, A.M. Abrão, Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools, J. Mater. Process. Technol. 143 (2003) 237–241 [CrossRef] [Google Scholar]
  8. J.S. Dureja, V.K. Gupta, M. Dogra, Design optimization of cutting conditions and analysis of their effect on tool wear and surface roughness during hard turning of AISI-H11 steel with a coatedmixed ceramic tool, J. Eng. Manuf. 223 (2009) 1441–1453 [CrossRef] [Google Scholar]
  9. S. Neseli, S. Yaldiz, E. Türkes, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement 44 (2011) 580–587 [CrossRef] [Google Scholar]
  10. M. Elbah, M.A. Yallese, H. Aouici, T. Mabrouki, J.F. Rigal, Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel, Measurement. 46 (2013) 3041–3056 [CrossRef] [Google Scholar]
  11. DI. Lalwani, N.K. Mehta, P.K. Jain, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel, J. Mater. Process. Technol. 206 (2008) 167–179 [CrossRef] [Google Scholar]
  12. H. Aouici, M. Elbah, M.A. Yallese, B. Fnides, I. Meddour, S. Benlahmidi, Performance comparison of wiper and conventional ceramic inserts in hard turning of AISI 4140 steel: analysis of machining forces and flank wear, Int. J. Adv. Manuf. Technol. 87 (2016) 2221–2244 [CrossRef] [Google Scholar]
  13. H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, JF. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization, Measurement. 45 (2012) 344–353 [CrossRef] [Google Scholar]
  14. H. Aouici, M.A. Yallese, B. Fnides, K. Chaoui, T. Mabrouki, Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: machining parameters effects on flank wear and surface roughness, J. Mech. Sci. Technol. 25 (2011) 2843–2851 [CrossRef] [Google Scholar]
  15. H. Bouchelaghem, M.A. Yallese, T. Mabrouki, A. Amirat, J.F. Rigal, Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3), Mach. Sci. Technol. 14 (2010) 471–501 [CrossRef] [Google Scholar]
  16. B. Fnides, H. Aouici, M.A. Yallese, Cutting forces and surface roughness in hard turning of hot work steel X38CrMoV5-1 using mixed ceramic, Mechanika 2 (2008) 73–78 [Google Scholar]
  17. H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology, Int. J. Adv. Manuf. Technol. 73 (2014) 1775–1788 [CrossRef] [Google Scholar]
  18. A. Khellaf, H. Aouici, S. Smaiah, S. Boutabba, M.A. Yallese, M. Elbah, Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography, Int. J. Adv. Manuf. Technol. 89 (2017) 333–354 [CrossRef] [Google Scholar]
  19. B. Fnides, M.A. Yallese, H. Aouici, Hard turning of hot work steel AISI H11: evaluation of cutting pressures, resulting force and temperature, Mechanika 4 (2008) 1392–1207 [Google Scholar]
  20. Z. Hessainia, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations, Measurement. 46 (2013) 1671–1681 [CrossRef] [Google Scholar]
  21. M.W. Azizi, A. Belbah, M.A. Yallese, T. Mabrouki, JF. Rigal, Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel, J. Mech. Sci. Technol. 25 (2012) 4105–4114 [CrossRef] [Google Scholar]
  22. M.F. Ameur, M. Habak, M. Kenane, H. Aouici, M. Cheikh, Machinability analysis of dry drilling of carbon/epoxy composites: cases of exit delamination and cylindricity error, Int. J. Adv. Manuf. Technol. 88 (2017) 2557–2571 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.