Free Access
Issue
Mechanics & Industry
Volume 21, Number 3, 2020
Article Number 302
Number of page(s) 14
DOI https://doi.org/10.1051/meca/2020019
Published online 03 April 2020
  1. R. Esmaeilpour, Finite element simulation of single point incremental sheet forming with barlat2004 yield function, cpfem, and 3d rve, Ph.D. thesis, The Ohio State University, 2018 [Google Scholar]
  2. D. Adams, J. Jeswiet, Design rules and applications of single-point incremental forming, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229, 754–760 (2015) [CrossRef] [Google Scholar]
  3. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single point incremental forming of sheet metal, CIRP Ann. Manuf. Technol. 54, 88–114 (2005) [Google Scholar]
  4. J.J. Park, Y.H. Kim, Fundamental studies on the incremental sheet metal forming technique, J. Mater. Process. Technol. 140, 447–453 (2003) [CrossRef] [Google Scholar]
  5. L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Ann. Manuf. Technol. 51, 199–202 (2002) [Google Scholar]
  6. W.C. Emmens, G. Sebastiani, A.H. van den Boogaard, The technology of Incremental Sheet Forming-A brief review of the history, J. Mater. Process. Technol. 210, 981–997 (2010) [CrossRef] [Google Scholar]
  7. S. Dejardin, S. Thibaud, J.C. Gelin, G. Michel, Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts, J. Mater. Process. Technol. 210, 363–369 (2010) [CrossRef] [Google Scholar]
  8. B. Salah, M. Echrif, A.N.D. Meftah Hrairi, Process simulation and quality Evaluation of incremental sheet metal forming IIUM Engineering Journal, Special Issue, Mechanical Engineering, 2011 [Google Scholar]
  9. E. Hagan, J. Jeswiet, A review of conventional and modern single-point sheet metal forming methods, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 217, 213–225 (2003) [CrossRef] [Google Scholar]
  10. J. Smith, R. Malhotra, W.K. Liu, J. Cao, Deformation mechanics in single-point and accumulative double-sided incremental forming, Int. J. Adv. Manuf. Technol. 69, 1185–1201 (2013) [Google Scholar]
  11. M.B. Silva, P.A.F. Martins, Two-point incremental forming with partial die: Theory and experimentation, J. Mater. Eng. Perform. 22, 1018–1027 (2013) [Google Scholar]
  12. M. Ham, J. Jeswiet, Single point incremental forming and the forming criteria for AA3003, CIRP Ann. − Manuf. Technol. 55, 241–244 (2006) [CrossRef] [Google Scholar]
  13. A. Bhattacharya, K. Maneesh, N. Venkata Reddy, J. Cao, Formability and surface finish studies in single point incremental forming, J. Manuf. Sci. Eng. 133, 61020 (2011) [Google Scholar]
  14. A. Petek, K. Kuzman, J. Kopac, Deformations and forces analysis of single point incremental sheet metal forming, Arch. Mater. Sci. Eng. 35, 107–116 (2009) [Google Scholar]
  15. P. Eyckens, B. Belkassem, C. Henrard, J. Gu, H. Sol, A.M. Habraken, J.R. Duflou, A. van Bael, P. van Houtte, Strain evolution in the single point incremental forming process: Digital image correlation measurement and finite element prediction, Int. J. Mater. Form. 4, 55–71 (2011) [CrossRef] [Google Scholar]
  16. Y. Li, Z. Liu, W.J.T. (Bill. Daniel, P.A. Meehan, Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process, Mater. Manuf. Process. 29, 121–128 (2014) [CrossRef] [Google Scholar]
  17. M. Yamashita, M. Gotoh, S.Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Mater. Process. Technol. 199, 163–172 (2008) [CrossRef] [Google Scholar]
  18. R. Von Mises, Mechanics der plastischen Forma ̈nderung von Kristallen, Zeitsch. Angew. Math. Mech. 8, 161–185 (1928) [CrossRef] [Google Scholar]
  19. R. Hill, A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy Soc. 193, 281–297 (1948) [Google Scholar]
  20. M. Bambach, Performance assessment of element formulations and constitutive laws for the simulation of incremental sheet forming (ISF), Proc. VIII Int. (2005) 1–4 [Google Scholar]
  21. F. Barlat, Linear transformation-based anisotropic yield functions, Int. J. Plasticity 21, 1009–1039 (2005) [CrossRef] [Google Scholar]
  22. R. Esmaeilpour, H. Kim, T. Park, F. Pourboghrat, B. Mohammed, Comparison of 3D yield functions for finite element simulation of single point incremental forming (SPIF) of aluminum 7075, Int. J. Mech. Sci. 133, 544–554 (2017) [CrossRef] [Google Scholar]
  23. R. Esmaeilpour, H. Kim, T. Park, F. Pourboghrat, Z. Xu, B. Mohammed, F. Abu-Farha, Calibration of Barlat Yld2004-18P Yield Function Using CPFEM and 3D RVE for the Simulation of Single Point Incremental Forming (SPIF) of 7075-O Aluminum Sheet, Int. J. Mech. Sci. 145, 24–41 (2018) [CrossRef] [Google Scholar]
  24. I. Cerro, E. Maidagan, J. Arana, A. Rivero, P.P. Rodríguez, Theoretical and experimental analysis of the dieless incremental sheet forming process, J. Mater. Process. Technol. 177, 404–408 (2006) [CrossRef] [Google Scholar]
  25. B. Saidi, A. Boulila, M. Ayadi, R. Nasri, Experimental force measurements in single point incremental sheet forming SPIF, Mech. Ind. 16, 410 (2015) [CrossRef] [Google Scholar]
  26. J. Duflou, Y. Tunçkol, A. Szekeres, P. Vanherck, Experimental study on force measurements for single point incremental forming, J. Mater. Process. Technol. 189, 65–72 (2007) [CrossRef] [Google Scholar]
  27. Y. Li, W.J.T. Daniel, Z. Liu, H. Lu, P.A. Meehan, Deformation mechanics and efficient force prediction in single point incremental forming, J. Mater. Process. Technol. 221, 100–111 (2015) [CrossRef] [Google Scholar]
  28. ASTM Int. Standard Test Methods for Tension Testing of Metallic Materials 1. Astm 2009 1–27. doi:10.1520/E0008. [Google Scholar]
  29. R.K. Boger, R.H. Wagoner, F. Barlat, M.G. Lee, K. Chung, Continuous, large strain, tension/compression testing of sheet material, Int. J Plast. 21, 2319–2343 (2005) [CrossRef] [Google Scholar]
  30. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075O [Google Scholar]
  31. L.W. Ma, J.H. Mo, Three-dimensional finite element method simulation of sheet metal single-point incremental forming and the deformation pattern analysis, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222, 373–380 (2008) [CrossRef] [Google Scholar]
  32. H. Kim, T. Park, R. Esmaeilpour, F. Pourboghrat, Numerical study of incremental sheet forming processes, J. Phys.: Conf. Ser. 1063, 012017 (2005) [CrossRef] [Google Scholar]
  33. ABAQUS User's Manual, version 6.14, Hibbit, Karlsson & Sorenson, Providence, RI (2000) [Google Scholar]
  34. L. Ben Said, J. Mars, M. Wali, F. Dammak, Effects of the tool path strategies on incremental sheet metal forming process, Mech. Ind. 17, 411 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  35. K. Suresh, A. Khan, S.P. Regalla, Tool path definition for numerical simulation of single point incremental forming, Proc. Eng. 64, 536–545 (2013) [CrossRef] [Google Scholar]
  36. R. Esmaeilpour, F. Pourboghrat, H. Kim, T. Park, Finite Element Analysis of Single Point Incremental Forming (SPIF) of Aluminum 7075 Using Different Types of Toolpath, IOP Conf. Ser.: Mater. Sci. Eng. 521, 012012 (2019) [CrossRef] [Google Scholar]
  37. A. Gheysarian, M. Honarpisheh, An experimental study on the process parameters of incremental forming of Al-Cu bimetal, J. CARME. 7, 73–83 (2017) [Google Scholar]
  38. M. Bambach, A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness, J. Mater. Process. Technol. 210, 1562–1573 (2010) [CrossRef] [Google Scholar]
  39. R.A. Lebensohn, C.N. Tome, A self-consistent anisotropic approach for the simulation of plastic deformation and texture developement of polycrystals: application to zirconium alloys, Acta Metall. Mater. 41, 2611–2624 (1993) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.