Open Access
Issue
Mechanics & Industry
Volume 23, 2022
Article Number 21
Number of page(s) 17
DOI https://doi.org/10.1051/meca/2022018
Published online 02 August 2022
  1. Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, J.E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol. 47 , 647–661 (2015) [Google Scholar]
  2. F. Crespi, G. Gavagnin, D. Sanchez, G.S. Martinez, Supercritical carbon dioxide cycles for power generation: a review, Appl. Energy 195 , 152–183 (2017) [CrossRef] [Google Scholar]
  3. Y.P. Liu, Y. Wang, D.G. Huang, Supercritical CO2 brayton cycle: a state-of-the-art review, Energy 189 (2019) [Google Scholar]
  4. F. Crespi, D. Sanchez, G.S. Martinez, T. Sanchez-Lencero, F. Jimenez-Espadafor, Potential of supercritical carbon dioxide power cycles to reduce the levelised cost of electricity of contemporary concentrated solar power plants, Appl. Sci.Basel. 10 (2020) [Google Scholar]
  5. P. Dutta, High temperature solar receiver and thermal storage systems, Appl. Therm. Eng. 124 , 624–632 (2017) [CrossRef] [Google Scholar]
  6. J.M. Yin, Q.Y. Zheng, Z.R. Peng, X.R. Zhang, Review of supercritical CO2 power cycles integrated with CSP, Int. J. Energy Res. 44 , 1337–1369 (2020) [CrossRef] [Google Scholar]
  7. M.M. Ehsan, Z.Q. Guan, H. Gurgenci, A. Klimenko, Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: review and a case study, Renew. Sustain. Energy Rev. 132 (2020) [Google Scholar]
  8. M.T. White, G. Bianchi, L. Chai, S.A. Tassou, A.I. Sayma, Review of supercritical CO2 technologies and systems for power generation, Appl. Thermal Eng. 185 (2021) [Google Scholar]
  9. R. Rzadkowski, G. Zywica, T.Z. Kaczmarczyk, A. Koprowski, K. Dominiczak, R. Szczepanik, M. Kowalski, Design and investigation of a partial admission radial 2.5-kW organic Rankine cycle micro-turbine, Int. J. Energy Res. 44 , 11029–11043 (2020) [CrossRef] [Google Scholar]
  10. H. Heidari, P. Safarpour, Optimal design of support parameters for minimum force transmissibility of a flexible rotor based on H and H-2 optimization methods, Eng. Optim. 50 , 671–683 (2018) [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Lim, S. Shin, Y. Kee, Optimization of rotor structural design in compound rotorcraft with lift offset, J. Am. Helicopter Soc. 61 (2016) [Google Scholar]
  12. O. Laldin, S.D. Sudhoff, S. Pekarek, An analytical design model for wound rotor synchronous machines, IEEE Trans. Energy Convers. 30 , 1299–1309 (2015) [CrossRef] [Google Scholar]
  13. L. Knypinski, K. Paweloszek, Y. Le Menach, Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies 13 (2020) [Google Scholar]
  14. A.L.E. Sarmiento, R.G.R. Camacho, W. de Oliveira, E.I.G. Velasquez, M. Murthi, N.J.D. Gautier, Design and off-design performance improvement of a radial-inflow turbine for ORC applications using metamodels and genetic algorithm optimization, Appl. Therm. Eng. 183 (2021) [Google Scholar]
  15. S. Tuchler, C.D. Copeland, Numerical optimisation of a micro-wave rotor turbine using a quasi-two-dimensional CFD model and a hybrid algorithm, Shock Waves 31 , 271–300 (2021) [CrossRef] [Google Scholar]
  16. L. Witanowski, P. Klonowicz, P. Lampart, T. Suchocki, L. Jedrzejewski, D. Zaniewski, P. Klimaszewski, Optimization of an axial turbine for a small scale ORC waste heat recovery system, Energy 205 (2020) [Google Scholar]
  17. K.J. Shibu, K. Shankar, C.K. Babu, G.K. Degaonkar, Multi-objective optimisation of a small aircraft turbine engine rotor system with self-updating Rayleigh damping model and frequency-dependent bearing-pedestal model, Proc. Inst. Mech. Eng. C 233 , 5710–5723 (2019) [CrossRef] [Google Scholar]
  18. S. Hiruma, M. Ohtani, S. Soma, Y. Kubota, H. Igarashi, Novel hybridization of parameter and topology optimizations: application to permanent magnet motor, IEEE Trans. Magn. 57 (2021) [CrossRef] [Google Scholar]
  19. A. Nag, H. Ramachandran, A. Shriwastava, Optimization of the interference parameters of an Orbit motor using genetic algorithm, Proc. Inst. Mech. Eng. C 234 , 4478–4492 (2020) [CrossRef] [Google Scholar]
  20. T. Ishikawa, K. Nakayama, N. Kurita, F.P. Dawson, Optimization of rotor topology in PM synchronous motors by genetic algorithm considering cluster of materials and cleaning procedure, IEEE Trans. Magn. 50 (2014) [Google Scholar]
  21. W. Kwak, Y. Lee, Optimal design and experimental verification of piezoelectric energy harvester with fractal structure, Appl. Energy 282 (2021) [Google Scholar]
  22. J.M. Ahn, J.C. Son, D.K. Lim, Optimal design of outer-rotor surface mounted permanent magnet synchronous motor for cogging torque reduction using territory particle swarm optimization, J. Electr. Eng. Technol. 16 , 429–436 (2021) [CrossRef] [Google Scholar]
  23. R.R. Mutra, J. Srinivas, R. Rzadkowski, An optimal parameter identification approach in foil bearing supported high-speed turbocharger rotor system, Arch. Appl. Mech. 91 , 1557–1575 (2021) [CrossRef] [Google Scholar]
  24. G.F. Gomes, J.A.S. Chaves, F.A. de Almeida, An inverse damage location problem applied to AS-350 rotor blades using bat optimization algorithm and multiaxial vibration data, Mech. Syst. Signal Process. 145 (2020) [Google Scholar]
  25. W. Peng, H. Yan, L. Bo, X. Qianhe, Multi-scale quantum harmonic oscillator optimization algorithm (Posts and Telecom Press, Beijing, 2016) [Google Scholar]
  26. W. Zheng, Rotor Dynamics Design of Rotating Machinery (Tsinghua University Press, Beijing, 2015) [Google Scholar]
  27. R. Albuquerque, D.L. Barbosa, Evaluation of bending critical speeds of hydrogenerator shaft lines using the transfer matrix method, Proc. Inst. Mech. Eng. C 227 , 2010–2022 (2013) [CrossRef] [Google Scholar]
  28. L. Ming, L. Zigang, Nonlinear Vibration of Rotor-Bearing System under Holonomic Constraints (Science Press, Beijing, 2016) [Google Scholar]
  29. C.C. Coello, G.B. Lamont, D.A.v. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Springer, Boston, MA, New York, 2007) [Google Scholar]
  30. P. Oscar, S. Beno, Theory of Hydrodynamic Lubrication (McGraw-Hill Book Company, NewYork, 1961) [Google Scholar]
  31. J. Li, H. Gurgenci, J. Li, L. Li, Z. Guan, F. Yang, Optimal design to control rotor shaft vibrations and thermal management on a supercritical CO2 microturbine, Mech. Ind. 22 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.