Open Access
Issue |
Mécanique & Industries
Volume 6, Number 1, Janvier-Février 2005
MÉCAMAT Aussois 2003 – Assemblages : des matériaux à la structure
|
|
---|---|---|
Page(s) | 13 - 20 | |
Section | Numéro régulier | |
DOI | https://doi.org/10.1051/meca:2005002 | |
Published online | 08 March 2005 |
- J. Landier, Modélisation et étude expérimentales des propriétés amortissantes des tôles sandwich, Thèse, Université de Metz, 1993 [Google Scholar]
- D.K. Rao, Frequency and loss factors of sandwich beams under various boundary conditions, J. Mech. Eng. Sci. 20(5) (1978) 271–282 [CrossRef] [Google Scholar]
- P. Cupial, J. Niziol, Vibration and damping analysis of three-layered composite plate with viscoelastic mid-layer, J. Sound Vibration 183(1) (1995) 99–114 [CrossRef] [Google Scholar]
- B.A. Ma, J.F. He, A Finite element analysis of viscoelastically damped sandwich plates, J. Sound Vibration 152 (1992) 107–123 [CrossRef] [Google Scholar]
- M.L. Soni, Finite element analysis of viscoelastically damped sandwich structures, Shock and Vibration Bull. 55(1) (1981) 97–109 [Google Scholar]
- R. Rikards, A. Chate, E. Barkanov, Finite element analysis of damping the vibrations of laminated composites, Computers and Structures 47(6) (1993) 1005–1015 [CrossRef] [Google Scholar]
- Y.P. Lu, J.W. Killian, G.C. Everstine, Vibrations of three layered damped sandwich plate composites, J. Sound Vibration 64(1) (1979) 63–71 [CrossRef] [Google Scholar]
- M.G. Sainsbury, Q.J. Zhang, The Galerkin element method applied to the vibration of damped sandwich beams, Computers and Structures 71 (1999) 239–256 [CrossRef] [Google Scholar]
- T.C. Ramesh, N. Ganesan, Finite element analysis of conical shells with a constrained viscoelastic layer, J. Sound Vibration 171(5) (1994) 577–601 [CrossRef] [Google Scholar]
- T. Baber Thomas, A. Maddox Richard, E. Orozco Carlos, A finite element model for harmonically excited viscoelastic sandwich beams, Computers and Structures 66(1) (1998) 105–113 [CrossRef] [Google Scholar]
- N. Alam, N.T. Asnani, Vibration and damping of multi layered cylindrical shell, Part I. AIAA J. 22 (1984) 803-10–975-81 [CrossRef] [Google Scholar]
- X. Chen, H.L. Chen, Le. Hu, Damping prediction of sandwich structures by order-reduction-iteration approach, J. Sound Vibration 222(5) (1999) 803–812 [CrossRef] [Google Scholar]
- E.M. Daya, M. Potier-Ferry, A numerical method for nonlinear eigenvalue problem, application to vibrations of viscoelastic structures, Computers and Structures 79 (2001) 533–541 [CrossRef] [MathSciNet] [Google Scholar]
- E.M. Daya, M. Potier-Ferry, A shell finite element for viscoelastically damped sandiwch structures, Revue Européenne des Éléments Finis 11(1) (2002) 39–56 [CrossRef] [Google Scholar]
- L. Duigou, E.M. Daya, M. Potier-Ferry, Iterative algorithms for non-linear eigenvalue problems, Application to vibrations of viscoelasticalic shells, Computer Methods in Applied Mechanics and Engineering 192 (2003) 1323–1335 [CrossRef] [Google Scholar]
- F.N. Adamou, P. Muller, M.T. Gautherin, Évaluation de l'amortissement d'une plaque sandwich acier-polymère-acier, Damping prediction of sandwich plate with constrained viscoelastic layer, Mécanique & Industries 4 (2003) 77–81 [CrossRef] [Google Scholar]
- M. Macé, Damping of beam vibration by means of thin constrained viscoelastic layer: Evaluation of a new theory, J. Sound Vibration 172(5) (1994) 577–591 [CrossRef] [Google Scholar]
- S. Adhikari, Optimal complex modes and an index of damping non-proportionality, Mechanical Systems and Signal Processing 18 (2004) 1–27 [CrossRef] [Google Scholar]
- Z.Q. Xia, S. Lukasiewicz, Non-linear analysis of damping properties of cylindrical sandwich panels, J. Sound Vibration 186(1) (1995) 55–69 [CrossRef] [Google Scholar]
- M. Ganapathi, B.P. Patel, P. Boisse, O. Polit, Flexural loss factors of sandwich and laminated beams using linear and nonlinear dynamic analysis, Composite Part B 30 (1999) 245–256 [Google Scholar]
- E.M. Daya, L. Azrar, M. Potier-Ferry, Modélisation des vibrations non-linéaires des structures sandwich viscoélastiques, Septièmes Journées d'Analyse Numérique et d'Optimisation, Tanger-Maroc, 2002, pp. 1–6 [Google Scholar]
- E.M. Daya, L. Azrar, M. Potier-Ferry, An amplitude equation for nonlinear vibrations of viscoelastically damped sandwich beams, J. Sound Vibration, 271 (2004) 789–813 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.