Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 707
Number of page(s) 9
Published online 30 December 2017
  1. M. Anderson, F. Bridier, J. Gholipour, M. Jahazi, P. Wanjara, P. Bocher, J. Savoie, Mechanical and metallurgical evolution of stainless steel 321 in multi-step forming process, J. Mater. Eng. Perform. 25 (2016) 1526–1538 [CrossRef] [Google Scholar]
  2. D.D. Baitanu, D.G. Galusca, D.C. Achitei, M.G. Minciuna, The analysis of physical-structural properties for AISI 321 steel, Key Eng. Mater. 700 (2016) 70–77 [CrossRef] [Google Scholar]
  3. M.G. Shahri, S.R. Hosseini, M. Salehi, Acta Metall. Sin. (English Letters) 28 (2015) 499–504, DOI:10.1007/s40195-015-0225-9 [CrossRef] [Google Scholar]
  4. A. Mahmoudi, M. Esmailian, S.E. Aghamiri, Effect of stabilizing heat treatment on intergranular corrosion resistance of welded stainless steel AISI 321, Adv. Mater. Res. 535–537 (2012) 692–696 [CrossRef] [Google Scholar]
  5. J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang, H. Fan, Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding, Surf. Coat. Technol. 206 (2012) 3399–3404 [CrossRef] [Google Scholar]
  6. Y. Lin, J. Lu, L. Wang, T. Xu, X. Qunji, Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel, Acta Mater. 54 (2006) 5599–5605 [CrossRef] [Google Scholar]
  7. H. Holkar, M. Sadaiah, Optimization of end milling machining parameters of AISI 321stainless steel using Taguchi method, Int. J. Recent Innov. Trends Comput. Commun. 4 (2016) 20–23 [Google Scholar]
  8. P. Guo, C.Z. Huang, B. Zou, J. Wang, H.L. Liu, H.T. Zhu, P. Yao, An experimental study on finish dry milling of AISI 321 stainless steel, Mater. Sci. Forum 861 (2016) 26–31 [CrossRef] [Google Scholar]
  9. Y. Ech-Charqy, H. Gziri, M. Essahli, Effect of machining process in superfinish turning on the corrosion behavior of UNS S31600 stainless steel in 6% NaCl solution, Port. Electrochim. Acta 34 (2016) 143–155 [CrossRef] [Google Scholar]
  10. K.D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M'Saoubi, Cutting with coated tools: coating technologies, characterization methods and performance optimization, CIRP Ann. Manuf. Technol. 61 (2012) 703–723, DOI:10.1016/j.cirp.2012.05.006 [CrossRef] [Google Scholar]
  11. M. Tkadletz, N. Schalk, R. Daniel, J. Keckes, C. Czettl, C. Mitterer, Advanced characterization methods for wear resistant hard coatings: a review on recent progress, Surf. Coat. Technol. 285 (2016) 31–46, DOI:10.1016/j.surfcoat.2015.11.016 [Google Scholar]
  12. H. Ezuraa, K. Ichijoa, H. Hasegawab, K. Yamamotoc, A. Hottaa, T. Suzukia, Micro-hardness, microstructures and thermal stability of (Ti,Cr,Al,Si)N films deposited by cathodic arc method, Vacuum 82 (2008) 476–481 [CrossRef] [Google Scholar]
  13. C.-H. Lai, K.-H. Cheng, S.-J. Lin, J.-W. Yeh, Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings, Surf. Coat. Technol. 202 (2008) 3732–3738 [CrossRef] [Google Scholar]
  14. M.G. Faga, G. Gautier, R. Calzavarini, M. Perucca, E. Aimo Boot, F. Cartasegna, L. Settineri, AlSiTiN nanocomposite coatings developed via arc cathodic PVD: evaluation of wear resistance via tribological analysis and high speed machining operations, Wear 263 (2007) 1306–1314 [CrossRef] [Google Scholar]
  15. A.A. Vereschaka, M.S. Migranov, Study of wear resistance of sintered powder tool materials, Adv. Mater. Res. 871 (2014) 159–163, DOI:10.4028/ [CrossRef] [Google Scholar]
  16. A.A. Vereschaka, M.A. Volosova, A.D. Batako, A.S. Vereschaka, B.Y. Mokritskii, Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition, Int. J. Adv. Manuf. Technol. 84 (2016) 1471–1482, DOI:10.1007/s00170-015-7808-5 [Google Scholar]
  17. A.A. Vereschaka, A.S. Vereschaka, A.D. Batako, O.K. Hojaev, B.Y. Mokritskii, Development and research of nano-structured multilayer composite coatings for tungsten-free carbides with extended area of technological applications, Int. J. Adv. Manuf. Technol. 87 (2016) 3449–3457, DOI:10.1007/s00170-016-8739-5 [CrossRef] [Google Scholar]
  18. A.A. Vereschaka, A.S. Vereschaka, O. Mgaloblishvili, M.N. Morgan, A.D. Batako, Nano-scale multilayer composite coatings for cutting tools. Int. J. Adv. Manuf. Technol. 72 (2014) 303–317, DOI:10.1007/s00170-014-5673-2 [CrossRef] [Google Scholar]
  19. A.A. Vereschaka, A.S. Vereschaka, J.I. Bublikov, A.Y. Aksenenko, N.N. Sitnikov, Study of properties of nano-structured multilayer composite coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N, J. Nano Res. 40 (2016) 90–98, DOI:10.4028/ [CrossRef] [Google Scholar]
  20. I. Efeoglu, E. Demirci, O. Baran, Y. Totik, High temperature wear resistance of TiCrAlCN/TiAlN multilayer PVD coatings on M2 high speed steel, ICMCTF-2013 Proc., San Diego, 2013. [Google Scholar]
  21. G.S. Fox-Rabinovich, B.D. Beake, K. Yamamoto, M.H. Aguirre, S.C. Veldhuis, G. Dosbaeva, A. Elfizy, A. Biksa, Shuster LS structure, properties and wear performance of nano-multilayer TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys, Surf. Coat. Technol. 204 (2010) 3698–3706 [CrossRef] [Google Scholar]
  22. C.-Y. Lay, K.-H. Cheng, S.-J. Lin, J.-W. Yeh, Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings, Surf. Coat. Technol. 202 (2008) 3732–3738 [CrossRef] [Google Scholar]
  23. A.S. Vereschaka, A.A. Vereschaka, M.S. Migranov, Study of wear resistance for modified surfaces of cutting tools, Appl. Mech. Mater. 548–549 (2014) 417–421, DOI:10.4028/ [CrossRef] [Google Scholar]
  24. A.O. Volkhonskii, A.A. Vereschaka, I.V. Blinkov, A.S. Vereschaka, A.D. Batako, Filtered cathodic vacuum arc deposition of nano-layered composite coatings for machining hard-to-cut materials, Int. J. Adv. Manuf. Technol. 84 (2016) 1647–1660, DOI:10.1007/s00170-015-7821-8 [Google Scholar]
  25. S.N. Grigoriev, A.A. Vereschaka, Methodology of formation of multilayer coatings for carbide cutting tools, Mechanics & Industry. 17 (2016) 706, DOI:10.1051/meca/2016065 [Google Scholar]
  26. W.C. Oliver, G.M.J. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation, J. Mater. Res. 7 (1992) 1564–1583 [NASA ADS] [CrossRef] [Google Scholar]
  27. A.A. Vereschaka, S.N. Grigoriev, Study of cracking mechanisms in multilayer composite nano-structured coatings, Wear 43–57 (2017) 378–379, DOI:10.1016/j.wear.2017.01.101 [Google Scholar]
  28. A.A. Vereschaka, S.N. Grigoriev, N.N. Sitnikov, A. Batako, Delamination and longitudinal cracking in multi-layered composite nano-structured coatings and their influence on cutting tool life, Wear 390–391 (2017) 209–219, DOI:10.1016/j.wear.2017.07.021 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.