Issue
Mechanics & Industry
Volume 18, Number 7, 2017
STANKIN: Innovative manufacturing methods, measurements and materials
Article Number 708
Number of page(s) 6
DOI https://doi.org/10.1051/meca/2017051
Published online 30 December 2017
  1. A.V. Hayes, V. Kanarov, B. Vidinsky, Fifty centimeter ion beam source, Rev. Sci. Instrum. 67 (1996) 1638–1641, DOI:10.1063/1.1146907 [CrossRef] [Google Scholar]
  2. A.S. Metel, S.N. Grigoriev, Yu.A. Melnik, V.P. Bolbukov, Broad beam sources of fast molecules with segmented cold cathodes and emissive grids, Instrum. Exp. Tech. 55 (2012) 122–130, DOI:10.1134/S0020441211060170 [CrossRef] [Google Scholar]
  3. D.J. Economou, Fast (tens to hundreds of eV) neutral beams for materials processing, J. Phys. D: Appl. Phys. 41 (2008) 024001, DOI:10.1088/0022-3727/41/2/024001 [CrossRef] [Google Scholar]
  4. S.N. Grigoriev, Yu.A. Melnik, A.S. Metel, M.A. Volosova, Focused beams of fast neutral atoms in glow discharge plasma, J. Appl. Phys. 121 (2017) 223302, DOI:10.1063/1.4985249 [CrossRef] [Google Scholar]
  5. A. Metel, M. Volosova, S. Grigoriev, Yu. Melnik, Products pre-treatment and beam-assisted deposition of magnetron sputtered coatings using a closed cylindrical grid inside a planetary rotation system, Surf. Coat. Technol. 325 (2017) 327–332, DOI:10.1016/j.surfcoat.2017.06.071 [CrossRef] [Google Scholar]
  6. D.M. Goebel, R.M. Watkins, High current, low pressure plasma cathode electron gun, Rev. Sci. Instrum. 71 (1996) 388–398, DOI:10.1063/1.1150212 [CrossRef] [Google Scholar]
  7. R. Ramaseshan, F. Jose, S. Rajagopalan, S. Dash, Preferentially oriented electron beam deposited TiN thin films using focused jet of nitrogen gas, Surf. Eng. 32 (2016) 834–839, DOI:10.1080/02670844.2016.1159832 [CrossRef] [Google Scholar]
  8. S.N. Grigoriev, Yu.A. Melnik, A.S. Metel, V.V. Panin, V.V. Prudnikov, A compact vapor source of conductive target material sputtered by 3-keV ions at 0.05-Pa pressure, Instrum. Exp. Tech. 52 (2009) 731–737, DOI:10.1134/S0020441209050170 [Google Scholar]
  9. S. Veprek, H.-D. Mannling, P. Karvankova, J. Prochazka, The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥50 GPa, Surf. Coat. Technol. 200 (2006) 3876–3885, DOI:10.1016/j.surfcoat.2004.11.023 [CrossRef] [Google Scholar]
  10. C. Ruset, E. Grigore, The influence of ion implantation on the properties of titanium nitride layer deposited by magnetron sputtering, Surf. Coat. Technol. 156 (2002) 159–161, DOI:10.1016/s0257-8972(02)00121-4 [CrossRef] [Google Scholar]
  11. J. Musil, A. Rajsky, A.J. Bell, J. Matous, M. Cepera, J. Zeman, High-rate magnetron sputtering, J. Vac. Sci. Technol. A 14 (1996) 2187–2191, DOI:10.1116/1.580045 [CrossRef] [Google Scholar]
  12. S.N. Grigoriev, A.S. Metel, S.V. Fedorov, Modification of the structure and properties of high-speed steel by combined vacuum-plasma treatment, Metal Sci. Heat Treat. 54 (2012) 8–12, DOI:10.1007/s11041-012-9447-x [Google Scholar]
  13. A. Metel, V. Bolbukov, M. Volosova, S. Grigoriev, Yu. Melnik, Equipment for deposition of thin metallic films bombarded by fast argon atoms, Instrum. Exp. Tech. 57 (2014) 345–351, DOI:10.1134/S0020441214020110 [CrossRef] [Google Scholar]
  14. J. Musil, J. Leština, J. Vlček, T. Tölg, Pulsed dc magnetron discharge for high-rate sputtering of thin films, J. Vac. Sci. Technol. A 19 (2001) 420–424, DOI:10.1116/1.1339018 [CrossRef] [Google Scholar]
  15. A. Anders, Tutorial: reactive high power impulse magnetron sputtering, J. Appl. Phys. 121 (2017) 171101, DOI:10.1063/1.4978350 [CrossRef] [Google Scholar]
  16. V.N. Zhitomirsky, I. Grimberg, L. Rapoport, R.L. Boxman, N.A. Travitzky, S. Goldsmith, B.Z. Weiss, Bias voltage and incidence angle effects on the structure and properties of vacuum arc deposited TiN coatings, Surf. Coat. Technol. 133–134 (2000) 114–120, DOI:10.1016/S0257-8972(00)00884-7 [CrossRef] [Google Scholar]
  17. S.N. Grigoriev, Yu.A. Melnik, A.S. Metel, Gas discharge source of metal vapor and fast gas atoms, Instrum. Exp. Tech. 56 (2013) 358–364, DOI:10.1134/S0020441213030044 [CrossRef] [Google Scholar]
  18. A.S. Metel, Yu.A. Melnik, A high-current plasma emitter of electrons based on a glow discharge with a multirod electrostatic trap, Instrum. Exp. Tech. 56 (2013) 317–324, DOI:10.1134/S0020441213020164 [CrossRef] [Google Scholar]
  19. A.S. Metel, Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma, Plasma Phys. Rep. 38 (2012) 254–262, DOI:10.1134/S1063780X12020080 [CrossRef] [Google Scholar]
  20. I. Beilis, Y. Koulik, Y. Yankelevich, D. Arbilly, R. Boxman, Thin-film deposition with refractory materials using a vacuum arc, IEEE Trans. Plasma Sci. 43 (2015) 2323–2328, DOI:10.1109/TPS.2015.2432577 [CrossRef] [Google Scholar]
  21. K. Tanaka, A. Anders, Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas, J. Vac. Sci. Technol. A 323 (2015) 061301, DOI:10.1116/1.4926750 [CrossRef] [Google Scholar]
  22. A. Metel, V. Bolbukov, M. Volosova, S. Grigoriev, Yu. Melnik, Source of metal atoms and fast gas molecules for coating deposition on complex shaped dielectric products, Surf. Coat. Technol. 225 (2013) 34–39, DOI:10.1016/j.surfcoat.2013.03.013 [CrossRef] [Google Scholar]
  23. A.S. Metel, S.N. Grigoriev, M.A. Volosova, V.P. Bolbukov, Yu.A. Melnik, Role of electrostatic and magnetic electron confinement in a hollow-cathode glow discharge in a nonuniform magnetic field, Plasma Phys. Rep. 41 (2015) 188–197, DOI:10.1134/S1063780X14120058 [CrossRef] [Google Scholar]
  24. A.S. Metel, S.N. Grigoriev, M.A. Volosova, Yu.A. Melnik, Magnetron sputtering device with generation of pulsed beams of high-energy gas atoms, Instrum. Exp. Tech. 60 (2017) 290–296, DOI:10.1134/S1063780X14120058 [CrossRef] [Google Scholar]
  25. S. Grigoriev, A. Metel, Plasma- and beam-assisted deposition methods, in: A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore (Eds.), Nanostructured thin films and nanodispersion strengthened coatings, Kluwer Academic Publishers, Boston, Dordrecht, London, 2004, pp. 147–154, DOI:10.1007/1-4020-2222-0_14 [CrossRef] [Google Scholar]
  26. I. Langmuir, The interaction of electron and positive ion space charges in cathode sheaths, Phys. Rev. 33 (1929) 954–989, DOI:10.1103/PhysRev.33.954 [NASA ADS] [CrossRef] [Google Scholar]
  27. V.A. Shulov, V.I. Engelko, I.V. Kovalev, G. Mueller, Crater creation on the surface of refractory alloy parts during intense pulsed ion and electron beam irradiation, Proceedings of 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 2004, pp. 289–292, http://www.congress-2006.hcei.tsc.ru/cat/proc_2004/13/Paper_7_071.pdf [Google Scholar]
  28. A.S. Metel, Effect of ionization in the cathode layer on the characteristics of a Penning discharge. I. Hollow cathode discharge, Sov. Phys. − Tech. Phys. 30 (1985) 1133–1136 [Google Scholar]
  29. V.I. Kolobov, A.S. Metel, Glow discharges with electrostatic confinement of fast electrons, J. Phys. D: Appl. Phys. 48 (2015) 233001, DOI:10.1088/0022-3727/48/23/233001 [CrossRef] [Google Scholar]
  30. I. Smurov, M. Doubenskaia, S. Grigoriev, A. Nazarov, Optical Monitoring in Laser Cladding of Ti6Al4V, J. Therm. Spray Technol. 21 (2012) 1357–1362, DOI:10.1007/s11666-012-9808-4 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.